Abstract
Analyses were made of the fibrinolytic, plasminogen-activating system in skeletal muscle to determine if a regulating influence of the nerve could be detected on these enzymes. Young male mice underwent right sciatic neurectomy. Extracts were prepared from denervated muscle at 2- 17 d after axotomy and compared with controls. Using a cascade-style biochemical assay (Ranby, M., B. Norrman, and P. Wallen, 1982, Thromb. Res., 27:743-748) we found that low levels of plasminogen activator (PA) were present in adult, innervated mouse muscle, but that denervation resulted in a marked time-dependent increase in enzyme activity. Qualitative separation showed an eightfold increase in urokinase-like PA with moderate elevation of tissue PA activity after 10 d. Fibrin zymography (Granelli-Piperno, A., and E. Reich, 1978, J. Exp. Med., 148:223-234) revealed clear zones of lysis corresponding to molecular masses of 48 kD for urokinase-like PA and 75 kD for tissue PA, consistent with the molecular masses found for these enzymes in other tissues of the mouse (Dano, K., P. A. Andreasen, J. Grondahl- Hansen, P. Kristensen, L. S. Nielsen, and L. Skriver, 1985, Adv. Cancer Res., 44:139-266). In other studies we have shown that PA-activated plasmin readily attacks critical adhesive basement membrane molecules. The present results indicate that enzymes involved in plasminogen activation, particularly urokinase-like PA, rapidly increase after axotomy, suggesting they may have a role early in muscle denervation. Similar alterations in PA activity might underlie the elimination of polyneuronal innervation during mammalian muscle development. Certain neuromuscular diseases may also involve activation of these enzymes, resulting in degradation of basement membrane zone components and, therefore, warrant further study.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allbrook D. Skeletal muscle regeneration. Muscle Nerve. 1981 May-Jun;4(3):234–245. doi: 10.1002/mus.880040311. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Carlson B. M., Faulkner J. A. The regeneration of skeletal muscle fibers following injury: a review. Med Sci Sports Exerc. 1983;15(3):187–198. [PubMed] [Google Scholar]
- Carlson B. M. The regeneration of skeletal muscle. A review. Am J Anat. 1973 Jun;137(2):119–149. doi: 10.1002/aja.1001370202. [DOI] [PubMed] [Google Scholar]
- Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
- Danø K., Moller V., Ossowski L., Nielsen L. S. Purification and characterization of a plasminogen activator from mouse cells transformed by an oncogenic virus. Biochim Biophys Acta. 1980 Jun 13;613(2):542–555. doi: 10.1016/0005-2744(80)90110-2. [DOI] [PubMed] [Google Scholar]
- Danø K., Nielsen L. S., Møller V., Engelhart M. Inhibition of a plasminogen activator from oncogenic virus-transformed mouse cells by rabbit antibodies against the enzyme. Biochim Biophys Acta. 1980 Jun 5;630(1):146–151. doi: 10.1016/0304-4165(80)90146-4. [DOI] [PubMed] [Google Scholar]
- Dayton W. R., Reville W. J., Goll D. E., Stromer M. H. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry. 1976 May 18;15(10):2159–2167. doi: 10.1021/bi00655a020. [DOI] [PubMed] [Google Scholar]
- Eaton D. L., Baker J. B. Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine protease-binding factor. J Cell Physiol. 1983 Nov;117(2):175–182. doi: 10.1002/jcp.1041170207. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Duell M. J., Festoff B. W. Neurotrophic control of 16S acetylcholinesterase at the vertebrate neuromuscular junction. J Neurobiol. 1979 Sep;10(5):441–454. doi: 10.1002/neu.480100503. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Duell M. J. Protease inhibitors reduce effects of denervation on muscle end-plate acetylcholinesterase. J Neurochem. 1980 Nov;35(5):1166–1171. doi: 10.1111/j.1471-4159.1980.tb07872.x. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Patterson M. R., Duell M. J. Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture. J Neurobiol. 1980 Nov;11(6):557–570. doi: 10.1002/neu.480110606. [DOI] [PubMed] [Google Scholar]
- Festoff B. W. Neuromuscular junction macromolecules in the pathogenesis of amyotrophic leteral sclerosis. Med Hypotheses. 1980 Feb;6(2):121–131. doi: 10.1016/0306-9877(80)90078-x. [DOI] [PubMed] [Google Scholar]
- Festoff B. W., Oliver K. L., Reddy N. B. In vitro studies of skeletal muscle membranes. Effects of denervation on the macromolecular components of cation transport in red and white skeletal muscle. J Membr Biol. 1977 Apr 22;32(3-4):345–360. doi: 10.1007/BF01905227. [DOI] [PubMed] [Google Scholar]
- Festoff B. W., Patterson M. R., Romstedt K. Plasminogen activator: the major secreted neutral protease of cultured skeletal muscle cells. J Cell Physiol. 1982 Feb;110(2):190–195. doi: 10.1002/jcp.1041100213. [DOI] [PubMed] [Google Scholar]
- Ghins E., Colson-van Schoor M., Maréchal G. The origin of muscle stem cells in rat triceps surae regenerating after mincing. J Muscle Res Cell Motil. 1984 Dec;5(6):711–722. doi: 10.1007/BF00713929. [DOI] [PubMed] [Google Scholar]
- Granelli-Piperno A., Reich E. A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med. 1978 Jul 1;148(1):223–234. doi: 10.1084/jem.148.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guenther J., Nick H., Monard D. A glia-derived neurite-promoting factor with protease inhibitory activity. EMBO J. 1985 Aug;4(8):1963–1966. doi: 10.1002/j.1460-2075.1985.tb03878.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulati A. K. Basement membrane component changes in skeletal muscle transplants undergoing regeneration or rejection. J Cell Biochem. 1985;27(4):337–346. doi: 10.1002/jcb.240270404. [DOI] [PubMed] [Google Scholar]
- Gulati A. K., Reddi A. H., Zalewski A. A. Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J Cell Biol. 1983 Oct;97(4):957–962. doi: 10.1083/jcb.97.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulati A. K., Reddi A. H., Zalewski A. A. Changes in the extracellular matrix components fibronectin and laminin during immune rejection of skeletal muscle. Anat Rec. 1984 May;209(1):21–27. doi: 10.1002/ar.1092090104. [DOI] [PubMed] [Google Scholar]
- Gulati A. K., Zalewski A. A., Reddi A. H. An immunofluorescent study of the distribution of fibronectin and laminin during limb regeneration in the adult newt. Dev Biol. 1983 Apr;96(2):355–365. doi: 10.1016/0012-1606(83)90173-2. [DOI] [PubMed] [Google Scholar]
- Hatzfeld J., Miskin R., Reich E. Acetylcholine receptor: effects of proteolysis on receptor metabolism. J Cell Biol. 1982 Jan;92(1):176–182. doi: 10.1083/jcb.92.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hegt V. N. Localization and distribution of fibrinolysis inhibition in the walls of human arteries and veins. Thromb Res. 1977 Jan;10(1):121–133. doi: 10.1016/0049-3848(77)90085-8. [DOI] [PubMed] [Google Scholar]
- Kalderon N., Williams C. A. Extracellular proteolysis: developmentally regulated activity during chick spinal cord histogenesis. Brain Res. 1986 Feb;390(1):1–9. doi: 10.1016/0165-3806(86)90146-x. [DOI] [PubMed] [Google Scholar]
- Krystosek A., Seeds N. W. Plasminogen activator release at the neuronal growth cone. Science. 1981 Sep 25;213(4515):1532–1534. doi: 10.1126/science.7197054. [DOI] [PubMed] [Google Scholar]
- Krystosek A., Seeds N. W. Plasminogen activator secretion by granule neurons in cultures of developing cerebellum. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7810–7814. doi: 10.1073/pnas.78.12.7810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Larsson L. I., Skriver L., Nielsen L. S., Grøndahl-Hansen J., Kristensen P., Danø K. Distribution of urokinase-type plasminogen activator immunoreactivity in the mouse. J Cell Biol. 1984 Mar;98(3):894–903. doi: 10.1083/jcb.98.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laug W. E. Vascular smooth muscle cells inhibit the plasminogen activators secreted by endothelial cells. Thromb Haemost. 1985 Apr 22;53(2):165–169. [PubMed] [Google Scholar]
- Levin E. G. Latent tissue plasminogen activator produced by human endothelial cells in culture: evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6804–6808. doi: 10.1073/pnas.80.22.6804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAURO A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961 Feb;9:493–495. doi: 10.1083/jcb.9.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxwell L. C. Muscle fiber regeneration in nerve-intact and free skeletal muscle autografts in cats. Am J Physiol. 1984 Jan;246(1 Pt 1):C96–105. doi: 10.1152/ajpcell.1984.246.1.C96. [DOI] [PubMed] [Google Scholar]
- McLaughlin J., Bosmann H. B. Regulation of increased acid proteinase in denervated skeletal muscle. Exp Neurol. 1976 Feb;50(2):276–282. doi: 10.1016/0014-4886(76)90002-9. [DOI] [PubMed] [Google Scholar]
- Miledi R., Slater C. R. On the degeneration of rat neuromuscular junctions after nerve section. J Physiol. 1970 Apr;207(2):507–528. doi: 10.1113/jphysiol.1970.sp009076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miskin R., Easton T. G., Reich E. Plasminogen activator in chick embryo muscle cells: induction of enzyme by RSV, PMA and retinoic acid. Cell. 1978 Dec;15(4):1301–1312. doi: 10.1016/0092-8674(78)90055-7. [DOI] [PubMed] [Google Scholar]
- Muir A. R., Kanji A. H., Allbrook D. The structure of the satellite cells in skeletal muscle. J Anat. 1965 Jul;99(Pt 3):435–444. [PMC free article] [PubMed] [Google Scholar]
- Pearson C. M., Kar N. C. Muscle breakdown and lysosomal activation (biochemistry). Ann N Y Acad Sci. 1979;317:465–477. doi: 10.1111/j.1749-6632.1979.tb56562.x. [DOI] [PubMed] [Google Scholar]
- Pittman R. N. Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev Biol. 1985 Jul;110(1):91–101. doi: 10.1016/0012-1606(85)90067-3. [DOI] [PubMed] [Google Scholar]
- Pollack M. S., Bird J. W. Distribution and particle properties of acid hydroase in denervated muscle. Am J Physiol. 1968 Sep;215(3):716–722. doi: 10.1152/ajplegacy.1968.215.3.716. [DOI] [PubMed] [Google Scholar]
- Romstedt K., Beach R. L., Festoff B. W. Acetylcholine receptor turnover in clonal muscle cells: role of plasmin and effects of protease inhibitors. Muscle Nerve. 1983 May;6(4):283–290. doi: 10.1002/mus.880060407. [DOI] [PubMed] [Google Scholar]
- Rånby M., Norrman B., Wallén P. A sensitive assay for tissue plasminogen activator. Thromb Res. 1982 Sep 15;27(6):743–749. doi: 10.1016/0049-3848(82)90012-3. [DOI] [PubMed] [Google Scholar]
- Schultz E. A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. Anat Rec. 1974 Dec;180(4):589–595. doi: 10.1002/ar.1091800405. [DOI] [PubMed] [Google Scholar]
- Smokovitis A., Astrup T. Localization of fibrinolytic activity and inhibition of plasmin in the spinal cord of rat, guinea pig, and rabbit. J Neurosurg. 1978 Jun;48(6):1008–1014. doi: 10.3171/jns.1978.48.6.1008. [DOI] [PubMed] [Google Scholar]
- Unkeless J. C., Gordon S., Reich E. Secretion of plasminogen activator by stimulated macrophages. J Exp Med. 1974 Apr 1;139(4):834–850. doi: 10.1084/jem.139.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valinsky J. E., Le Douarin N. M. Production of plasminogen activator by migrating cephalic neural crest cells. EMBO J. 1985 Jun;4(6):1403–1406. doi: 10.1002/j.1460-2075.1985.tb03793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vartio T., Vaheri A., De Petro G., Barlati S. Fibronectin and its proteolytic fragments. Potential as cancer markers. Invasion Metastasis. 1983;3(3):125–138. [PubMed] [Google Scholar]
- Weinberg J. B., Hobbs M. M., Pizzo S. V. Microassay for the photometric quantitation of cell-associated plasminogen activator using a chromogenic tripeptide substrate. J Immunol Methods. 1984 Dec 31;75(2):289–294. doi: 10.1016/0022-1759(84)90112-1. [DOI] [PubMed] [Google Scholar]
