Abstract
Isozymes of creatine kinase and glycogen phosphorylase are excellent markers of skeletal muscle maturation. In adult innervated muscle only the muscle-gene-specific isozymes are present, whereas aneurally cultured human muscle has predominantly the fetal pattern of isozymes. We have studied the isozyme pattern of human muscle cultured in monolayer and innervated by rat embryo spinal cord explants for 20-42 d. In this culture system, large groups of innervated muscle fibers close to the ventral part of the spinal cord explant continuously contracted. The contractions were reversibly blocked by 1 mM d- tubocurarine. In those innervated fibers, the total activity and the muscle-gene-specific isozymes of both enzymes increased significantly. The amount of muscle-gene-specific isozymes directly correlated with the duration of innervation. Control noninnervated muscle fibers from the same dishes as the innervated fibers remained biochemically immature. This study demonstrated that de novo innervation of human muscle cultured in monolayer exerts a time-related maturational influence that is not mediated by a diffusable neural factor.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appleman M. M., Krebs E. G., Fischer E. H. Purification and properties of inactive liver phosphorylase. Biochemistry. 1966 Jun;5(6):2101–2107. doi: 10.1021/bi00870a043. [DOI] [PubMed] [Google Scholar]
- Askanas V., Engel W. K. A new program for investigating adult human skeletal muscle grown aneurally in tissue culture. Neurology. 1975 Jan;25(1):58–67. doi: 10.1212/wnl.25.1.58. [DOI] [PubMed] [Google Scholar]
- Askanas V., Engel W. K., Kobayashi T. Thyrotropin-releasing hormone enhances motor neuron-evoked contractions of cultured human muscle. Ann Neurol. 1985 Dec;18(6):716–719. doi: 10.1002/ana.410180615. [DOI] [PubMed] [Google Scholar]
- Askanas V., Gallez-Hawkins G. Synergistic influence of polypeptide growth factors on cultured human muscle. Arch Neurol. 1985 Aug;42(8):749–752. doi: 10.1001/archneur.1985.04210090013004. [DOI] [PubMed] [Google Scholar]
- Avigan J., Askanas V., Engel W. K. Muscle carnitine deficiency: fatty acid metabolism in cultured fibroblasts and muscle cells. Neurology. 1983 Aug;33(8):1021–1026. doi: 10.1212/wnl.33.8.1021. [DOI] [PubMed] [Google Scholar]
- Crain S. M., Alfei L., Peterson E. R. Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervation in vitro by fetal rodent spinal cord. J Neurobiol. 1970;1(4):471–489. doi: 10.1002/neu.480010409. [DOI] [PubMed] [Google Scholar]
- Davis C. H., Schliselfeld L. H., Wolf D. P., Leavitt C. A., Krebs E. G. Interrelationships among glycogen phosphorylase isozymes. J Biol Chem. 1967 Oct 25;242(20):4824–4833. [PubMed] [Google Scholar]
- Desjarlais F., Morin L. G., Daigneault R. In search of optimum conditions for the measurement of creatine kinase activity: a critical review of nineteen formulations. Clin Biochem. 1980 Jun;13(3):116–121. doi: 10.1016/s0009-9120(80)90771-7. [DOI] [PubMed] [Google Scholar]
- DiMauro S., Arnold S., Miranda A., Rowland L. P. McArdle disease: the mystery of reappearing phosphorylase activity in muscle culture--a fetal isoenzyme. Ann Neurol. 1978 Jan;3(1):60–66. doi: 10.1002/ana.410030109. [DOI] [PubMed] [Google Scholar]
- Ecob M. S. The application of organotypic nerve cultures to problems in neurology with special reference to their potential use in research into neuromuscular diseases. J Neurol Sci. 1983 Jan;58(1):1–15. doi: 10.1016/0022-510x(83)90105-3. [DOI] [PubMed] [Google Scholar]
- Hess J. W., Murdock K. J., Natho G. J. Creatine phosphokinase. A spectrophotometric method with improved sensitivity. Am J Clin Pathol. 1968 Jul;50(1):89–97. doi: 10.1093/ajcp/50.1.89. [DOI] [PubMed] [Google Scholar]
- Hughes R. J. A bioluminescent assay for glycogen phosphorylase in cultured cells. Anal Biochem. 1983 Jun;131(2):318–323. doi: 10.1016/0003-2697(83)90176-8. [DOI] [PubMed] [Google Scholar]
- Iannaccone S. T., Nagy B., Samaha F. J. Partial biochemical maturation of aneurally cultured human skeletal muscle. Neurology. 1982 Aug;32(8):846–851. doi: 10.1212/wnl.32.8.846. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Askanas V. Acetylcholine receptors and acetylcholinesterase accumulate at the nerve-muscle contacts of de novo grown human monolayer muscle cocultured with fetal rat spinal cord. Exp Neurol. 1985 May;88(2):327–335. doi: 10.1016/0014-4886(85)90195-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marshall L. M., Sanes J. R., McMahan U. J. Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3073–3077. doi: 10.1073/pnas.74.7.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meienhofer M. C., Askanas V., Proux-Daegelen D., Dreyfus J. C., Engel W. K. Muscle-type phosphorylase activity present in muscle cells cultured from three patients with myophosphorylase deficiency. Arch Neurol. 1977 Dec;34(12):779–781. doi: 10.1001/archneur.1977.00500240067013. [DOI] [PubMed] [Google Scholar]
- Proux D., Vibert M., Meienhofer M. C., Dreyfus J. C. The isozymes of glycogen phosphorylase in human and rabbit tissues. II. Electrofocusing in polyacrylamide gels. Clin Chim Acta. 1974 Dec 17;57(3):211–216. doi: 10.1016/0009-8981(74)90399-4. [DOI] [PubMed] [Google Scholar]
- Richter F., Böhme H. J., Hofmann E. Developmental changes of glycogen phosphorylase b isozymes in rat tissues. Biomed Biochim Acta. 1983;42(10):1229–1235. [PubMed] [Google Scholar]
- Sato K., Imai F., Hatayama I., Roelofs R. I. Characterization of glycogen phosphorylase isoenzymes present in cultured skeletal muscle from patients with McArdle's disease. Biochem Biophys Res Commun. 1977 Sep 23;78(2):663–668. doi: 10.1016/0006-291x(77)90230-3. [DOI] [PubMed] [Google Scholar]
- Sato K., Morris H. P., Weinhouse S. Phosphorylase: a new isozyme in rat hepatic tumors and fetal liver. Science. 1972 Nov 24;178(4063):879–881. doi: 10.1126/science.178.4063.879. [DOI] [PubMed] [Google Scholar]
- Sato K., Satoh K., Sato T., Imai F., Morris H. P. Isozyme patterns of glycogen phosphorylase in rat tissues and transplantable hepatomas. Cancer Res. 1976 Feb;36(2 Pt 1):487–495. [PubMed] [Google Scholar]
- Sato T., Sato K. Microheterogeneity of rat glycogen phosphorylase liver-type isozyme. Biochim Biophys Acta. 1980 Apr 11;612(2):344–351. doi: 10.1016/0005-2744(80)90117-5. [DOI] [PubMed] [Google Scholar]
- Satoh K., Imai F., Sato K. A new glycogen phosphorylase present in the rat tissues containing the brain-type isozyme. The active monomer of brain-type isozyme. FEBS Lett. 1978 Nov 15;95(2):239–242. doi: 10.1016/0014-5793(78)81002-3. [DOI] [PubMed] [Google Scholar]
- Stalmans W., Hers H. G. The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. A technical note on the specific determination of the a and b forms of liver glycogen phosphorylase. Eur J Biochem. 1975 Jun;54(2):341–350. doi: 10.1111/j.1432-1033.1975.tb04144.x. [DOI] [PubMed] [Google Scholar]
- Tahmoush A. J., Askanas V., Nelson P. G., Engel W. K. Electrophysiologic properties of aneurally cultured muscle from patients with myotonic muscular atrophy. Neurology. 1983 Mar;33(3):311–316. doi: 10.1212/wnl.33.3.311. [DOI] [PubMed] [Google Scholar]
- Vogel Z., Sytkowski A. J., Nirenberg M. W. Acetylcholine receptors of muscle grown in vitro. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3180–3184. doi: 10.1073/pnas.69.11.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YUNIS A. A., FISCHER E. H., KREBS E. G. Crystallization and properties of human muscle phosphorylases a and b. J Biol Chem. 1960 Nov;235:3163–3168. [PubMed] [Google Scholar]