Abstract
Anchoring fibrils are specialized fibrous structures found in the subbasal lamina underlying epithelia of several external tissues. Based upon their sensitivity to collagenase and the similarity in banding pattern to artificially created segment-long spacing crystallites (SLS) of collagens, several authors have suggested that anchoring fibrils are lateral aggregates of collagenous macromolecules. We recently reported the similarity in length and banding pattern of anchoring fibrils to type VII collagen SLS crystallites. We now report the construction and characterization of a murine monoclonal antibody specific for type VII collagen. The epitope identified by this antibody has been mapped to the carboxyl terminus of the major helical domain of this molecule. The presence of type VII collagen as detected by indirect immunofluorescence in a variety of tissues corresponds exactly with ultrastructural observations of anchoring fibrils. Ultrastructural immunolocalization of type VII collagen using a 5-nm colloidal gold- conjugated second antibody demonstrates metal deposition upon anchoring fibrils at both ends of these structures, as predicted by the location of the epitope on type VII collagen. Type VII collagen is synthesized by primary cultures of amniotic epithelial cells. It is also produced by KB cells (an epidermoid carcinoma cell line) and WISH (a transformed amniotic cell line).
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alitalo K., Vaheri A., Krieg T., Timpl R. Biosynthesis of two subunits of type IV procollagen and of other basement membrane proteins by a human tumor cell line. Eur J Biochem. 1980 Aug;109(1):247–255. doi: 10.1111/j.1432-1033.1980.tb04790.x. [DOI] [PubMed] [Google Scholar]
- Bentz H., Morris N. P., Murray L. W., Sakai L. Y., Hollister D. W., Burgeson R. E. Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3168–3172. doi: 10.1073/pnas.80.11.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggaman R. A., Wheeler C. E., Jr Epidermolysis bullosa dystrophica-recessive: a possible role of anchoring fibrils in the pathogenesis. J Invest Dermatol. 1975 Aug;65(2):203–211. doi: 10.1111/1523-1747.ep12598208. [DOI] [PubMed] [Google Scholar]
- Bruns R. R. A symmetrical, extracellular fibril. J Cell Biol. 1969 Aug;42(2):418–430. doi: 10.1083/jcb.42.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgeson R. E., El Adli F. A., Kaitila I. I., Hollister D. W. Fetal membrane collagens: identification of two new collagen alpha chains. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2579–2583. doi: 10.1073/pnas.73.8.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieringer H., Hollister D. W., Glanville R. W., Sakai L. Y., Kühn K. Structural studies of human basement-membrane collagen with the use of a monoclonal antibody. Biochem J. 1985 Apr 1;227(1):217–222. doi: 10.1042/bj2270217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EAGLE H. Propagation in a fluid medium of a human epidermoid carcinoma, strain KB. Proc Soc Exp Biol Med. 1955 Jul;89(3):362–364. doi: 10.3181/00379727-89-21811. [DOI] [PubMed] [Google Scholar]
- Engvall E., Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972 Jul;109(1):129–135. [PubMed] [Google Scholar]
- FOGH J., LUND R. O. Continuous cultivation of epithelial cell strain (FL) from human amniotic membrane. Proc Soc Exp Biol Med. 1957 Mar;94(3):532–537. doi: 10.3181/00379727-94-23003. [DOI] [PubMed] [Google Scholar]
- Goldsmith L. A., Briggaman R. A. Monoclonal antibodies to anchoring fibrils for the diagnosis of epidermolysis bullosa. J Invest Dermatol. 1983 Nov;81(5):464–466. doi: 10.1111/1523-1747.ep12522669. [DOI] [PubMed] [Google Scholar]
- Hessle H., Sakai L. Y., Hollister D. W., Burgeson R. E., Engvall E. Basement membrane diversity detected by monoclonal antibodies. Differentiation. 1984;26(1):49–54. doi: 10.1111/j.1432-0436.1984.tb01372.x. [DOI] [PubMed] [Google Scholar]
- Holbrook K. A., Smith L. T. Ultrastructural aspects of human skin during the embryonic, fetal, premature, neonatal, and adult periods of life. Birth Defects Orig Artic Ser. 1981;17(2):9–38. [PubMed] [Google Scholar]
- Hollister D. W., Sakai L. Y., Morris N. P., Shimono L. H., Burgeson R. E. Production and characterization of hybridoma antibody to native human type II collagen. Coll Relat Res. 1982;2(3):197–210. doi: 10.1016/s0174-173x(82)80014-9. [DOI] [PubMed] [Google Scholar]
- Kahl F. R., Pearson R. W. Ultrastructural studies of experimental vesiculation. II. Collagenase. J Invest Dermatol. 1967 Dec;49(6):616–631. doi: 10.1038/jid.1967.189. [DOI] [PubMed] [Google Scholar]
- Kawanami O., Ferrans V. J., Roberts W. C., Crystal R. G., Fulmer J. D. Anchoring fibrils. A new connective tissue structure in fibrotic lung disease. Am J Pathol. 1978 Aug;92(2):389–410. [PMC free article] [PubMed] [Google Scholar]
- Köhler G., Howe S. C., Milstein C. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur J Immunol. 1976 Apr;6(4):292–295. doi: 10.1002/eji.1830060411. [DOI] [PubMed] [Google Scholar]
- Laguens R. Subepithelial fibrils associated with the basement membrane of human cervical epithelium. J Ultrastruct Res. 1972 Nov;41(3):202–208. doi: 10.1016/s0022-5320(72)90064-0. [DOI] [PubMed] [Google Scholar]
- Lane A. T., Helm K. F., Goldsmith L. A. Identification of bullous pemphigoid, pemphigus, laminin, and anchoring fibril antigens in human fetal skin. J Invest Dermatol. 1985 Jan;84(1):27–30. doi: 10.1111/1523-1747.ep12274612. [DOI] [PubMed] [Google Scholar]
- Linsenmayer T. F., Fitch J. M., Schmid T. M., Zak N. B., Gibney E., Sanderson R. D., Mayne R. Monoclonal antibodies against chicken type V collagen: production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs. J Cell Biol. 1983 Jan;96(1):124–132. doi: 10.1083/jcb.96.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris N. P., Keene D. R., Glanville R. W., Bentz H., Burgeson R. E. The tissue form of type VII collagen is an antiparallel dimer. J Biol Chem. 1986 Apr 25;261(12):5638–5644. [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasheed S., Nelson-Rees W. A., Toth E. M., Arnstein P., Gardner M. B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974 Apr;33(4):1027–1033. doi: 10.1002/1097-0142(197404)33:4<1027::aid-cncr2820330419>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Rowlatt C. Subepithelial fibrils associated with the basal lamina under simple epithelia in mouse uterus: possible tropocollagen aggregates. J Ultrastruct Res. 1969 Jan;26(1):44–51. doi: 10.1016/s0022-5320(69)90034-3. [DOI] [PubMed] [Google Scholar]
- Sakai L. Y., Engvall E., Hollister D. W., Burgeson R. E. Production and characterization of a monoclonal antibody to human Type IV collagen. Am J Pathol. 1982 Sep;108(3):310–318. [PMC free article] [PubMed] [Google Scholar]
- Stefanini M., De Martino C., Zamboni L. Fixation of ejaculated spermatozoa for electron microscopy. Nature. 1967 Oct 14;216(5111):173–174. doi: 10.1038/216173a0. [DOI] [PubMed] [Google Scholar]
- Susi F. R., Belt W. D., Kelly J. W. Fine structure of fibrillar complexes associated with the basement membrane in human oral mucosa. J Cell Biol. 1967 Aug;34(2):686–690. doi: 10.1083/jcb.34.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Der Mark K., Ocalan M. Immunofluorescent localization of type V collagen in the chick embryo with monoclonal antibodies. Coll Relat Res. 1982 Nov;2(6):541–555. doi: 10.1016/s0174-173x(82)80008-3. [DOI] [PubMed] [Google Scholar]