Abstract
We have tried to specify a widespread hypothesis on the requirement of ATP for exocytosis (membrane fusion). With Paramecium tetraurelia cells, synchronously (approximately 1 s) exocytosing trichocysts, ATP pools have been measured in different strains, including wild type cells, "non-discharge" (nd), "trichless" (tl), and other mutations. The occurrence of a considerable and rapid ATP consumption also in nd and tl mutations as well as its time course (with a maximum 3-5 s after exocytosis) in exocytosis-competent strains does not match the actual extent of exocytosis performance. However, from in vivo as well as from in vitro experiments, we came to the conclusion that ATP might be required to keep the system in a primed state and its removal might facilitate membrane fusion. (For the study of exocytosis in vitro we have developed a new system, consisting of isolated cortices). In vivo as well as in vitro exocytosis is inhibited by increased levels of ATP or by a nonhydrolyzable ATP analogue. In vitro exocytosis is facilitated in ATP-free media. In vivo-microinjected ATP retards exocytosis in response to chemical triggers, whereas microinjected apyrase triggers exocytosis without exogenous trigger. Experiments with this system also largely exclude any overlaps with other processes that normally accompany exocytosis. Our data also explain why it was frequently assumed that ATP would be required for exocytosis. We conclude that membrane fusion during exocytosis does not require the presence of ATP; the occurrence of membrane fusion might involve the elimination of ATP from primed fusogenic sites; most of the ATP consumption measured in the course of exocytosis may be due to other effects, probably to recovery phenomena.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. J. Organelle movement in axons depends on ATP. Nature. 1982 May 27;297(5864):327–329. doi: 10.1038/297327a0. [DOI] [PubMed] [Google Scholar]
- Akkerman J. W., Gorter G., Schrama L., Holmsen H. A novel technique for rapid determination of energy consumption in platelets. Demonstration of different energy consumption associated with three secretory responses. Biochem J. 1983 Jan 15;210(1):145–155. doi: 10.1042/bj2100145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Knight D. E. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):83–103. doi: 10.1098/rstb.1981.0174. [DOI] [PubMed] [Google Scholar]
- Baker P. F., Whitaker M. J. Influence of ATP and calcium on the cortical reaction in sea urchin eggs. Nature. 1978 Nov 30;276(5687):513–515. doi: 10.1038/276513a0. [DOI] [PubMed] [Google Scholar]
- Bauduin H., Colin M., Dumont J. E. Energy sources for protein synthesis and enzymatic secretion in rat pancreas in vitro. Biochim Biophys Acta. 1969 Feb 18;174(2):722–733. doi: 10.1016/0005-2787(69)90301-3. [DOI] [PubMed] [Google Scholar]
- Beaven M. A., Rogers J., Moore J. P., Hesketh T. R., Smith G. A., Metcalfe J. C. The mechanism of the calcium signal and correlation with histamine release in 2H3 cells. J Biol Chem. 1984 Jun 10;259(11):7129–7136. [PubMed] [Google Scholar]
- Bilinski M., Plattner H., Tiggemann R. Isolation of surface membranes from normal and exocytotic mutant strains of Paramecium tetraurelia. Ultrastructural and biochemical characterization. Eur J Cell Biol. 1981 Apr;24(1):108–115. [PubMed] [Google Scholar]
- Brooks J. C., Treml S., Brooks M. Thiophosphorylation prevents catecholamine secretion by chemically skinned chromaffin cells. Life Sci. 1984 Jul 30;35(5):569–574. doi: 10.1016/0024-3205(84)90251-0. [DOI] [PubMed] [Google Scholar]
- Browning J. L., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca2+ fluxes across resting and excited membrane. Biochim Biophys Acta. 1976 Oct 5;448(2):338–351. doi: 10.1016/0005-2736(76)90247-9. [DOI] [PubMed] [Google Scholar]
- Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
- Corpus V., Sun A. Y. Effects of ATP on calcium binding to synaptic plasma membrane. Neurochem Res. 1983 Apr;8(4):501–520. doi: 10.1007/BF00965106. [DOI] [PubMed] [Google Scholar]
- Creutz C. E., Dowling L. G., Sando J. J., Villar-Palasi C., Whipple J. H., Zaks W. J. Characterization of the chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+. J Biol Chem. 1983 Dec 10;258(23):14664–14674. [PubMed] [Google Scholar]
- Douglas W. W., Ueda Y. Proceedings: Mast cell secretion (histamine release) induced by 48-80: calcium-dependent exocytosis inhibited strongly by cytochalasin only when glycolysis is rate-limiting. J Physiol. 1973 Oct;234(2):97P–98P. [PubMed] [Google Scholar]
- Doussière J., Vignais P. V. AMP-dependence of the cyanide-insensitive pathway in the respiratory chain of Paramecium tetraurelia. Biochem J. 1984 Jun 15;220(3):787–794. doi: 10.1042/bj2200787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn L. A., Holz R. W. Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J Biol Chem. 1983 Apr 25;258(8):4989–4993. [PubMed] [Google Scholar]
- Foreman J. C., Mongar J. L., Gomperts B. D. Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature. 1973 Oct 5;245(5423):249–251. doi: 10.1038/245249a0. [DOI] [PubMed] [Google Scholar]
- Haga N., Forte M., Saimi Y., Kung C. Microinjection of cytoplasm as a test of complementation in Paramecium. J Cell Biol. 1982 Feb;92(2):559–564. doi: 10.1083/jcb.92.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog V., Sies H., Miller F. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. J Cell Biol. 1976 Sep;70(3):692–706. doi: 10.1083/jcb.70.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoekstra D., Wilschut J., Scherphof G. Fusion of erythrocyte ghosts induced by calcium phosphate. Kinetic characteristics and the role of Ca2+, phosphate and calcium-phosphate complexes. Eur J Biochem. 1985 Jan 2;146(1):131–140. doi: 10.1111/j.1432-1033.1985.tb08629.x. [DOI] [PubMed] [Google Scholar]
- Kersken H., Momayezi M., Braun C., Plattner H. Filamentous actin in paramecium cells: functional and structural changes correlated with phalloidin affinity labeling in vivo. J Histochem Cytochem. 1986 Apr;34(4):455–465. doi: 10.1177/34.4.3512697. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
- Matt H., Bilinski M., Plattner H. Adenosinetriphosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. J Cell Sci. 1978 Aug;32:67–86. doi: 10.1242/jcs.32.1.67. [DOI] [PubMed] [Google Scholar]
- Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
- Pace C. S., Tarvin J. T., Neighbors A. S., Pirkle J. A., Greider M. H. Use of a high voltage technique to determine the molecular requirements for exocytosis in islet cells. Diabetes. 1980 Nov;29(11):911–918. doi: 10.2337/diab.29.11.911. [DOI] [PubMed] [Google Scholar]
- Painter R. G., Ginsberg M. H. Centripetal myosin redistribution in thrombin-stimulated platelets. Relationship to platelet Factor 4 secretion. Exp Cell Res. 1984 Nov;155(1):198–212. doi: 10.1016/0014-4827(84)90781-x. [DOI] [PubMed] [Google Scholar]
- Peterson C., Diamant B. Increased utilization of endogenous ATP in isolated rat mast cells during histamine release induced by compound 48-80. Acta Pharmacol Toxicol (Copenh) 1974 May;34(5):337–346. doi: 10.1111/j.1600-0773.1974.tb03530.x. [DOI] [PubMed] [Google Scholar]
- Plattner H., Matt H., Kersken H., Haacke B., Stürzl R. Synchronous exocytosis in Paramecium cells. I. A novel approach. Exp Cell Res. 1984 Mar;151(1):6–13. doi: 10.1016/0014-4827(84)90350-1. [DOI] [PubMed] [Google Scholar]
- Plattner H., Pape R., Haacke B., Olbricht K., Westphal C., Kersken H. Synchronous exocytosis in Paramecium cells. VI. Ultrastructural analysis of membrane resealing and retrieval. J Cell Sci. 1985 Aug;77:1–17. doi: 10.1242/jcs.77.1.1. [DOI] [PubMed] [Google Scholar]
- Plattner H., Reichel K., Matt H., Beisson J., Lefort-Tran M., Pouphile M. Genetic dissection of the final exocytosis steps in Paramecium tetraurelia cells: cytochemical determination of Ca2+-ATPase activity over performed exocytosis sites. J Cell Sci. 1980 Dec;46:17–40. doi: 10.1242/jcs.46.1.17. [DOI] [PubMed] [Google Scholar]
- Plattner H., Stürzl R., Matt H. Synchronous exocytosis in Paramecium cells. IV. Polyamino compounds as potent trigger agents for repeatable trigger-redocking cycles. Eur J Cell Biol. 1985 Jan;36(1):32–37. [PubMed] [Google Scholar]
- Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
- Ranadive N. S., Cochrane C. G. Mechanism of histamine release from mast cells by cationic protein (band 2) from neutrophil lysosomes. J Immunol. 1971 Feb;106(2):506–516. [PubMed] [Google Scholar]
- Riezman H. Endocytosis in yeast: several of the yeast secretory mutants are defective in endocytosis. Cell. 1985 Apr;40(4):1001–1009. doi: 10.1016/0092-8674(85)90360-5. [DOI] [PubMed] [Google Scholar]
- Sanchez A. Ca2+-independent secretion is dependent on cytoplasmic ATP in human platelets. FEBS Lett. 1985 Oct 28;191(2):283–286. doi: 10.1016/0014-5793(85)80025-9. [DOI] [PubMed] [Google Scholar]
- Sasaki H. Modulation of calcium sensitivity by a specific cortical protein during sea urchin egg cortical vesicle exocytosis. Dev Biol. 1984 Jan;101(1):125–135. doi: 10.1016/0012-1606(84)90123-4. [DOI] [PubMed] [Google Scholar]
- Schmidt H. W., Herzog V., Miller F. Oxygen consumption of isolated acini from rat parotid gland. Eur J Cell Biol. 1980 Feb;20(3):201–208. [PubMed] [Google Scholar]
- Schnitzler S., Renner H., Pfüller U. Histamine release from rat mast cells induced by protamine sulfate and polyethylene imine. Agents Actions. 1981 Apr;11(1-2):73–74. doi: 10.1007/BF01991461. [DOI] [PubMed] [Google Scholar]
- Schön E. A., Decker G. L. Ion-dependent stages of the cortical reaction in surface complexes isolated from Arbacia punctulata eggs. J Ultrastruct Res. 1981 Aug;76(2):191–201. doi: 10.1016/s0022-5320(81)80017-2. [DOI] [PubMed] [Google Scholar]
- Svendstrup F., Chakravarty N. Glucose metabolism in rat mast cells during histamine release. Exp Cell Res. 1977 Apr;106(1):223–231. doi: 10.1016/0014-4827(77)90259-2. [DOI] [PubMed] [Google Scholar]
- Tiggemann R., Plattner H. Possible involvement of a calmodulin regulated Ca2+ -ATPase in exocytosis performance in Paramecium tetraurelia cells. FEBS Lett. 1982 Nov 8;148(2):226–230. doi: 10.1016/0014-5793(82)80812-0. [DOI] [PubMed] [Google Scholar]
- Tolleshaug H., Kolset S. O., Berg T. The influence of cellular ATP levels on receptor-mediated endocytosis and degradation of asialo-glycoproteins in suspended hepatocytes. Biochem Pharmacol. 1985 May 15;34(10):1639–1645. doi: 10.1016/0006-2952(85)90628-8. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell. 1985 Mar;40(3):559–569. doi: 10.1016/0092-8674(85)90204-1. [DOI] [PubMed] [Google Scholar]
- Whitaker M. J., Baker P. F. Calcium-dependent exocytosis in an in vitro secretory granule plasma membrane preparation from sea urchin eggs and the effects of some inhibitors of cytoskeletal function. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):397–413. doi: 10.1098/rspb.1983.0047. [DOI] [PubMed] [Google Scholar]
- Wilson S. P., Kirshner N. Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J Biol Chem. 1983 Apr 25;258(8):4994–5000. [PubMed] [Google Scholar]
- Woodin A. M., Wieneke A. A. The participation of calcium, adenosine triphosphate and adenosine triphosphatase in the extrusion of the granule proteins from the polymorphonuclear leucocyte. Biochem J. 1964 Mar;90(3):498–509. doi: 10.1042/bj0900498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zakai N., Kulka R. G., Loyter A. Membrane ultrastructural changes during calcium phosphate-induced fusion of human erythrocyte ghosts. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2417–2421. doi: 10.1073/pnas.74.6.2417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zieseniss E., Plattner H. Synchronous exocytosis in Paramecium cells involves very rapid (less than or equal to 1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. J Cell Biol. 1985 Dec;101(6):2028–2035. doi: 10.1083/jcb.101.6.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]