Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Nov 1;103(5):1745–1750. doi: 10.1083/jcb.103.5.1745

The development of regionalized lipid diffusibility in the germ cell plasma membrane during spermatogenesis in the mouse

PMCID: PMC2114369  PMID: 3782284

Abstract

The lipids and proteins of sperm cells are highly regionalized in their lateral distribution. Fluorescence recovery after photobleaching studies of sperm membrane component lateral diffusibility have shown that the sperm plasma membrane is also highly regionalized in the extents and rates of diffusion of its surface components. These studies have also shown that regionalized changes in lateral diffusibility occur during the differentiative processes of epididymal maturation and capacitation. Unlike mammalian somatic cells, sperm cells exhibit large nondiffusing lipid fractions. In this paper, we will show that both regionalized lipid diffusibility and nondiffusing lipid fractions develop with the morphogenesis of cell shape during spermatogenesis in the mouse. Pachytene spermatocytes and round spermatids show diffusion rates and the nearly complete recoveries (80-90%) typical of mammalian somatic cells. In contrast, stage 10-11 condensing spermatids, testicular spermatozoa, cauda epididymal spermatozoa, as well as the anucleate structures associated with these later stages of spermatogenesis (residual bodies and the cytoplasmic droplets of condensing spermatids and testicular spermatozoa), exhibit large nondiffusing fractions. Both the diffusion rates and diffusing fractions observed on the anterior and posterior regions of the head of stage 10-11 condensing spermatids are the same as the values obtained for these regions on testicular spermatozoa. Possible mechanisms of lipid immobilization and possible physiological implications of this nondiffusing lipid are discussed.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979 Jun;26(3):557–573. doi: 10.1016/S0006-3495(79)85271-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barisas B. G., Leuther M. D. Fluorescence photobleaching recovery measurement of protein absolute diffusion constants. Biophys Chem. 1979 Sep;10(2):221–229. doi: 10.1016/0301-4622(79)85044-9. [DOI] [PubMed] [Google Scholar]
  4. Bearer E. L., Friend D. S. Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm. J Cell Biol. 1982 Mar;92(3):604–615. doi: 10.1083/jcb.92.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bellvé A. R., Millette C. F., Bhatnagar Y. M., O'Brien D. A. Dissociation of the mouse testis and characterization of isolated spermatogenic cells. J Histochem Cytochem. 1977 Jul;25(7):480–494. doi: 10.1177/25.7.893996. [DOI] [PubMed] [Google Scholar]
  6. Bradley M. P., Rayns D. G., Forrester I. T. Effects of filipin, digitonin, and polymyxin b on plasma membrane of ram spermatozoa--an EM study. Arch Androl. 1980 May;4(3):195–204. doi: 10.3109/01485018008986963. [DOI] [PubMed] [Google Scholar]
  7. Bragg P. W., Handel M. A. Protein synthesis in mouse spermatozoa. Biol Reprod. 1979 Mar;20(2):333–337. doi: 10.1095/biolreprod20.2.333. [DOI] [PubMed] [Google Scholar]
  8. Dacheux J. L., Voglmayr J. K. Sequence of sperm cell surface differentiation and its relationship to exogenous fluid proteins in the ram epididymis. Biol Reprod. 1983 Nov;29(4):1033–1046. doi: 10.1095/biolreprod29.4.1033. [DOI] [PubMed] [Google Scholar]
  9. Derzko Z., Jacobson K. Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers. Biochemistry. 1980 Dec 23;19(26):6050–6057. doi: 10.1021/bi00567a016. [DOI] [PubMed] [Google Scholar]
  10. Dictus W. J., van Zoelen E. J., Tetteroo P. A., Tertoolen L. G., de Laat S. W., Bluemink J. G. Lateral mobility of plasma membrane lipids in Xenopus eggs: regional differences related to animal/vegetal polarity become extreme upon fertilization. Dev Biol. 1984 Jan;101(1):201–211. doi: 10.1016/0012-1606(84)90130-1. [DOI] [PubMed] [Google Scholar]
  11. Evans R. W., Weaver D. E., Clegg E. D. Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa. J Lipid Res. 1980 Feb;21(2):223–228. [PubMed] [Google Scholar]
  12. Ewing L. L., Davis J. C., Zirkin B. R. Regulation of testicular function: a spatial and temporal view. Int Rev Physiol. 1980;22:41–115. [PubMed] [Google Scholar]
  13. Fahey P. F., Webb W. W. Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry. 1978 Jul 25;17(15):3046–3053. doi: 10.1021/bi00608a016. [DOI] [PubMed] [Google Scholar]
  14. HARTREE E. F., MANN T. Phospholipids in ram semen: metabolism of plasmalogen and fatty acids. Biochem J. 1961 Sep;80:464–476. doi: 10.1042/bj0800464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HARTREE E. F., MANN T. Plasmalogen in ram semen, and its role in sperm metabolism. Biochem J. 1959 Mar;71(3):423–434. doi: 10.1042/bj0710423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holt W. V. Membrane heterogeneity in the mammalian spermatozoon. Int Rev Cytol. 1984;87:159–194. doi: 10.1016/s0074-7696(08)62442-0. [DOI] [PubMed] [Google Scholar]
  17. Johnson L. A., Pursel V. G., Gerrits R. J. Total phospholipid and phospholipid fatty acids of ejaculated and epididymal semen and seminal vesicle fluids of boars. J Anim Sci. 1972 Aug;35(2):398–403. doi: 10.2527/jas1972.352398x. [DOI] [PubMed] [Google Scholar]
  18. Klausner R. D., Wolf D. E. Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry. 1980 Dec 23;19(26):6199–6203. doi: 10.1021/bi00567a039. [DOI] [PubMed] [Google Scholar]
  19. Koehler J. K. The mammalian sperm surface: studies with specific labeling techniques. Int Rev Cytol. 1978;54:73–108. doi: 10.1016/s0074-7696(08)60165-5. [DOI] [PubMed] [Google Scholar]
  20. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Myles D. G., Primakoff P., Koppel D. E. A localized surface protein of guinea pig sperm exhibits free diffusion in its domain. J Cell Biol. 1984 May;98(5):1905–1909. doi: 10.1083/jcb.98.5.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicolson G. L., Yanagimachi R. Mobility and the restriction of mobility of plasma membrane lectin-binding components. Science. 1974 Jun 21;184(4143):1294–1296. doi: 10.1126/science.184.4143.1294. [DOI] [PubMed] [Google Scholar]
  23. Parks J. E., Hammerstedt R. H. Development changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol Reprod. 1985 Apr;32(3):653–668. doi: 10.1095/biolreprod32.3.653. [DOI] [PubMed] [Google Scholar]
  24. Peters R., Richter H. P. Translational diffusion in the plasma membrane of sea urchin eggs. Dev Biol. 1981 Sep;86(2):285–293. doi: 10.1016/0012-1606(81)90186-x. [DOI] [PubMed] [Google Scholar]
  25. Peters R. Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep. 1981 Aug;5(8):733–760. doi: 10.1016/0309-1651(81)90231-9. [DOI] [PubMed] [Google Scholar]
  26. Poulos A., Voglmayr J. K., White I. G. Phospholipid changes in spermatozoa during passage through the genital tract of the bull. Biochim Biophys Acta. 1973 May 24;306(2):194–202. doi: 10.1016/0005-2760(73)90225-7. [DOI] [PubMed] [Google Scholar]
  27. Premkumar E., Bhargava P. M. Transcription and translation in bovine spermatozoa. Nat New Biol. 1972 Nov 29;240(100):139–143. doi: 10.1038/newbio240139a0. [DOI] [PubMed] [Google Scholar]
  28. Romrell L. J., Bellvé A. R., Fawcett D. W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol. 1976 Mar;49(1):119–131. doi: 10.1016/0012-1606(76)90262-1. [DOI] [PubMed] [Google Scholar]
  29. Russell L. D., Peterson R. N., Hunt W., Strack L. E. Posttesticular surface modifications and contributions of reproductive tract fluids to the surface polypeptide composition of boar spermatozoa. Biol Reprod. 1984 May;30(4):959–978. doi: 10.1095/biolreprod30.4.959. [DOI] [PubMed] [Google Scholar]
  30. Schmell E. D., Gulyas B. J., Yuan L. C., August J. T. Identification of mammalian sperm surface antigens: II. Characterization of an acrosomal cap protein and a tail protein using monoclonal anti-mouse sperm antibodies. J Reprod Immunol. 1982 May;4(2):91–106. doi: 10.1016/0165-0378(82)90040-7. [DOI] [PubMed] [Google Scholar]
  31. Schmell E. D., Yuan L. C., Gulyas B. J., August J. T. Identification of mammalian sperm surface antigens. I. Production of monoclonal anti-mouse sperm antibodies. Fertil Steril. 1982 Feb;37(2):249–257. [PubMed] [Google Scholar]
  32. Schneider M. B., Chan W. K., Webb W. W. Fast diffusion along defects and corrugations in phospholipid P beta, liquid crystals. Biophys J. 1983 Aug;43(2):157–165. doi: 10.1016/S0006-3495(83)84336-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scott T. W., Voglmayr J. K., Setchell B. P. Lipid composition and metabolism in testicular and ejaculated ram spermatozoa. Biochem J. 1967 Feb;102(2):456–461. doi: 10.1042/bj1020456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Voglmayr J. K., Fairbanks G., Jackowitz M. A., Colella J. R. Post-testicular developmental changes in the ram sperm cell surface and their relationship to luminal fluid proteins of the reproductive tract. Biol Reprod. 1980 Apr;22(3):655–667. doi: 10.1093/biolreprod/22.3.655. [DOI] [PubMed] [Google Scholar]
  35. Wolf D. E. Determination of the sidedness of carbocyanine dye labeling of membranes. Biochemistry. 1985 Jan 29;24(3):582–586. doi: 10.1021/bi00324a006. [DOI] [PubMed] [Google Scholar]
  36. Wolf D. E., Edidin M., Handyside A. H. Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: indications from the lateral diffusion rates of fluorescent lipid analogs. Dev Biol. 1981 Jul 15;85(1):195–198. doi: 10.1016/0012-1606(81)90250-5. [DOI] [PubMed] [Google Scholar]
  37. Wolf D. E., Hagopian S. S., Ishijima S. Changes in sperm plasma membrane lipid diffusibility after hyperactivation during in vitro capacitation in the mouse. J Cell Biol. 1986 Apr;102(4):1372–1377. doi: 10.1083/jcb.102.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wolf D. E., Hagopian S. S., Lewis R. G., Voglmayr J. K., Fairbanks G. Lateral regionalization and diffusion of a maturation-dependent antigen in the ram sperm plasma membrane. J Cell Biol. 1986 May;102(5):1826–1831. doi: 10.1083/jcb.102.5.1826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wolf D. E., Kinsey W., Lennarz W., Edidin M. Changes in the organization of the sea urchin egg plasma membrane upon fertilization: indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev Biol. 1981 Jan 15;81(1):133–138. doi: 10.1016/0012-1606(81)90355-9. [DOI] [PubMed] [Google Scholar]
  40. Wolf D. E., Voglmayr J. K. Diffusion and regionalization in membranes of maturing ram spermatozoa. J Cell Biol. 1984 May;98(5):1678–1684. doi: 10.1083/jcb.98.5.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wolf D. E., Ziomek C. A. Regionalization and lateral diffusion of membrane proteins in unfertilized and fertilized mouse eggs. J Cell Biol. 1983 Jun;96(6):1786–1790. doi: 10.1083/jcb.96.6.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES