Abstract
As a first step towards the identification and purification of the molecule(s) that are involved in cell contact-mediated tyrosine hydroxylase (TH) induction in cultures of bovine adrenal chromaffin cells, we have prepared plasma membranes (PM) from bovine adrenal medulla and tested their ability to mimick cell contact-mediated TH induction in low density chromaffin cultures. PM indeed induced TH in a manner similar to that observed in high density cultures. The maximal TH induction reached by PM corresponded to 69% of that of high density cultures, and half-maximal TH induction was obtained with 12 micrograms of PM per ml of medium. The induction of TH by PM was blocked by alpha- amanitin as observed in high density cultures. Since acetylcholinesterase was neither induced in high density nor in PM- treated low density cultures, an induction of TH as a result of a general increase in protein synthesis was excluded. The cell contact molecule(s) appear to be intrinsic membrane proteins. They were not removed by high or low salt extraction, but solubilized by 50 mM octylglucoside. They were resistant to 0.1% trypsin and heat denaturation but inactivated by 0.01% chymotrypsin. PM isolated from the adrenal cortex, kidney, and liver also induced TH in low density chromaffin cell cultures, although to a smaller extent than PM of the adrenal medulla. In contrast, muscle and erythrocyte PM were inactive. This shows that the cell contact molecule(s) are not restricted to the adrenal medulla, but are also present in some other but not all tissues.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acheson A. L., Naujoks K., Thoenen H. Nerve growth factor-mediated enzyme induction in primary cultures of bovine adrenal chromaffin cells: specificity and level of regulation. J Neurosci. 1984 Jul;4(7):1771–1780. doi: 10.1523/JNEUROSCI.04-07-01771.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Acheson A. L., Thoenen H. Cell contact-mediated regulation of tyrosine hydroxylase synthesis in cultured bovine adrenal chromaffin cells. J Cell Biol. 1983 Sep;97(3):925–928. doi: 10.1083/jcb.97.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Acheson A., Edgar D., Timpl R., Thoenen H. Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells. J Cell Biol. 1986 Jan;102(1):151–159. doi: 10.1083/jcb.102.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adler J. E., Black I. B. Sympathetic neuron density differentially regulates transmitter phenotypic expression in culture. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4296–4300. doi: 10.1073/pnas.82.12.4296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blume A., Gilbert F., Wilson S., Farber J., Rosenberg R., Nirenberg M. Regulation of acetylcholinesterase in neuroblastoma cells. Proc Natl Acad Sci U S A. 1970 Oct;67(2):786–792. doi: 10.1073/pnas.67.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunge R., Glaser L., Lieberman M., Raben D., Salzer J., Whittenberger B., Woolsey T. Growth control by cell to cell contact. J Supramol Struct. 1979;11(2):175–187. doi: 10.1002/jss.400110207. [DOI] [PubMed] [Google Scholar]
- Cassel D., Wood P. M., Bunge R. P., Glaser L. Mitogenicity of brain axolemma membranes and soluble factors for dorsal root ganglion Schwann cells. J Cell Biochem. 1982;18(4):433–445. doi: 10.1002/jcb.1982.240180405. [DOI] [PubMed] [Google Scholar]
- Edelman G. M. Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Annu Rev Neurosci. 1984;7:339–377. doi: 10.1146/annurev.ne.07.030184.002011. [DOI] [PubMed] [Google Scholar]
- Frazier W., Glaser L. Surface components and cell recognition. Annu Rev Biochem. 1979;48:491–523. doi: 10.1146/annurev.bi.48.070179.002423. [DOI] [PubMed] [Google Scholar]
- Gallin W. J., Edelman G. M., Cunningham B. A. Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1038–1042. doi: 10.1073/pnas.80.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gentry M. K., Olsson R. A. A simple, specific, radioisotopic assay for 5'-nucleotidase. Anal Biochem. 1975 Apr;64(2):624–627. doi: 10.1016/0003-2697(75)90478-9. [DOI] [PubMed] [Google Scholar]
- Grupp S. A., Lieberman M. A., Harmony J. A. Inhibition of lymphocyte proliferation by detergent-solubilized mouse liver membranes. J Cell Biol. 1985 Aug;101(2):380–385. doi: 10.1083/jcb.101.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jørgensen O. S., Delouvée A., Thiery J. P., Edelman G. M. The nervous system specific protein D2 is involved in adhesion among neurites from cultured rat ganglia. FEBS Lett. 1980 Feb 25;111(1):39–42. doi: 10.1016/0014-5793(80)80756-3. [DOI] [PubMed] [Google Scholar]
- Keshishian H., Bentley D. Embryogenesis of peripheral nerve pathways in grasshopper legs. I. The initial nerve pathway to the CNS. Dev Biol. 1983 Mar;96(1):89–102. doi: 10.1016/0012-1606(83)90314-7. [DOI] [PubMed] [Google Scholar]
- Keshishian H., Bentley D. Embryogenesis of peripheral nerve pathways in grasshopper legs. II. The major nerve routes. Dev Biol. 1983 Mar;96(1):103–115. doi: 10.1016/0012-1606(83)90315-9. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Conn G., Hatcher V. B. Isolated plasma membranes regulate neurotransmitter expression and facilitate effects of a soluble brain cholinergic factor. Proc Natl Acad Sci U S A. 1986 May;83(10):3528–3532. doi: 10.1073/pnas.83.10.3528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langley O. K., Aunis D. Surface expression of neural cell adhesion molecule in cultured bovine paraneurones: immunogold and immunoperoxidase methods compared. Neurosci Lett. 1986 Feb 28;64(2):151–156. doi: 10.1016/0304-3940(86)90091-1. [DOI] [PubMed] [Google Scholar]
- Lieberman M. A. The presence of both growth inhibitory and growth stimulatory factors on membranes prepared from mouse liver. Biochem Biophys Res Commun. 1984 May 16;120(3):891–897. doi: 10.1016/s0006-291x(84)80191-6. [DOI] [PubMed] [Google Scholar]
- Livett B. G. Adrenal medullary chromaffin cells in vitro. Physiol Rev. 1984 Oct;64(4):1103–1161. doi: 10.1152/physrev.1984.64.4.1103. [DOI] [PubMed] [Google Scholar]
- Mizobe F., Livett B. G. Production and release of acetylcholinesterase by a primary cell culture of bovine adrenal medullary chromaffin cells. J Neurochem. 1980 Dec;35(6):1469–1472. doi: 10.1111/j.1471-4159.1980.tb09028.x. [DOI] [PubMed] [Google Scholar]
- Nakamura T., Nakayama Y., Ichihara A. Reciprocal modulation of growth and liver functions of mature rat hepatocytes in primary culture by an extract of hepatic plasma membranes. J Biol Chem. 1984 Jul 10;259(13):8056–8058. [PubMed] [Google Scholar]
- Nakamura T., Yoshimoto K., Nakayama Y., Tomita Y., Ichihara A. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell--cell contact and cell membranes. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7229–7233. doi: 10.1073/pnas.80.23.7229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naujoks K. W., Korsching S., Rohrer H., Thoenen H. Nerve growth factor-mediated induction of tyrosine hydroxylase and of neurite outgrowth in cultures of bovine adrenal chromaffin cells: dependence on developmental stage. Dev Biol. 1982 Aug;92(2):365–379. doi: 10.1016/0012-1606(82)90182-8. [DOI] [PubMed] [Google Scholar]
- Obrink B. Epithelial cell adhesion molecules. Exp Cell Res. 1986 Mar;163(1):1–21. doi: 10.1016/0014-4827(86)90554-9. [DOI] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Peterson S. W., Lerch V., Moynahan M. E., Carson M. P., Vale R. Partial characterization of a growth-inhibiting protein in 3T3 cell plasma membranes. Exp Cell Res. 1982 Dec;142(2):447–451. doi: 10.1016/0014-4827(82)90386-x. [DOI] [PubMed] [Google Scholar]
- Raben D., Lieberman M. A., Glaser L. Growth inhibitory protein(s) in the 3T3 cell plasma membrane. Partial purification and dissociation of growth inhibitory events from inhibition of amino acid transport. J Cell Physiol. 1981 Jul;108(1):35–45. doi: 10.1002/jcp.1041080106. [DOI] [PubMed] [Google Scholar]
- Ratner N., Glaser L., Bunge R. P. PC12 cells as a source of neurite-derived cell surface mitogen, which stimulates Schwann cell division. J Cell Biol. 1984 Mar;98(3):1150–1155. doi: 10.1083/jcb.98.3.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rougon G., Deagostini-Bazin H., Hirn M., Goridis C. Tissue- and developmental stage-specific forms of a neural cell surface antigen linked to differences in glycosylation of a common polypeptide. EMBO J. 1982;1(10):1239–1244. doi: 10.1002/j.1460-2075.1982.tb00019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stallcup K. C., Burakoff S. J., Mescher M. F. Growth-inhibitory activity of lymphoid cell plasma membranes. II. Partial characterization of the inhibitor. J Cell Biol. 1984 Oct;99(4 Pt 1):1227–1234. doi: 10.1083/jcb.99.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stallcup K. C., Dawson A., Mescher M. F. Growth-inhibitory activity of lymphoid cell plasma membranes. I. Inhibition of lymphocyte and lymphoid tumor cell growth. J Cell Biol. 1984 Oct;99(4 Pt 1):1221–1226. doi: 10.1083/jcb.99.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trifaró J. M., Duerr A. C. Isolation and characterization of a Golgi-rich fraction from the adrenal medulla. Biochim Biophys Acta. 1976 Jan 14;421(1):153–167. doi: 10.1016/0304-4165(76)90179-3. [DOI] [PubMed] [Google Scholar]
- Whittenberger B., Raben D., Lieberman M. A., Glaser L. Inhibition of growth of 3T3 cells by extract of surface membranes. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5457–5461. doi: 10.1073/pnas.75.11.5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieser R. J., Heck R., Oesch F. Involvement of plasma membrane glycoproteins in the contact-dependent inhibition of growth of human fibroblasts. Exp Cell Res. 1985 Jun;158(2):493–499. doi: 10.1016/0014-4827(85)90472-0. [DOI] [PubMed] [Google Scholar]