Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Nov 1;103(5):1807–1816. doi: 10.1083/jcb.103.5.1807

Chymotrypsin substrate analogues inhibit endocytosis of insulin and insulin receptors in adipocytes

PMCID: PMC2114384  PMID: 2877995

Abstract

To explore the possible role of proteolytic step(s) in receptor- mediated endocytosis of insulin, the effects of inhibitors of various classes of proteases on the internalization process were studied in isolated rat adipocytes. Intracellular accumulation of receptor-bound 125I-insulin at 37 degrees C was quantitated after rapidly dissociating surface-bound insulin with an acidic buffer (pH 3.0). Of the 23 protease inhibitors tested, only chymotrypsin substrate analogues inhibited insulin internalization. Internalization was decreased 62-90% by five different chymotrypsin substrate analogues: N-acetyl-Tyr ethyl ester, N-acetyl-Phe ethyl ester, N-acetyl-Trp ethyl ester, benzoyl-Tyr ethyl ester, and benzoyl-Tyr amide. The effect of the substrate analogues in inhibiting insulin internalization was dose-dependent, reversible, and required the full structural complement of a chymotrypsin substrate analogue. Cell surface receptor number was unaltered at 12 degrees C. However, concomitant with their inhibition of insulin internalization at 37 degrees C, the chymotrypsin substrate analogues caused a marked increase (160-380%) in surface-bound insulin, indicating trapping of insulin-receptor complexes on the cell surface. Additionally, 1 mM N-acetyl-Tyr ethyl ester decreased overall insulin degradation by 15-20% and also prevented the chloroquine-mediated increase in intracellular insulin, further indicating that surface- bound insulin was prevented from reaching intracellular chloroquine- sensitive degradation sites. The internalization of insulin receptors that were photoaffinity labeled on the cell surface with B2(2-nitro-4- azidophenylacetyl)-des-PheB1-insulin was also inhibited 70-90% by the five chymotrypsin substrate analogues, as determined by the effects of the analogues on the accumulation of trypsin-insensitive (intracellular) 440-kD intact labeled receptors. In summary, these results show that chymotrypsin substrate analogues efficiently inhibit the internalization of insulin and insulin receptors in adipocytes and implicate a possible role for endogenous chymotrypsin-like enzyme(s) or related substances in receptor-mediated endocytosis of insulin.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asakawa K., Grunberger G., McElduff A., Gorden P. Polypeptide hormone receptor phosphorylation: is there a role in receptor-mediated endocytosis of human growth hormone? Endocrinology. 1985 Aug;117(2):631–637. doi: 10.1210/endo-117-2-631. [DOI] [PubMed] [Google Scholar]
  2. Baxter D. A., Johnston D., Strittmatter W. J. Protease inhibitors implicate metalloendoprotease in synaptic transmission at the mammalian neuromuscular junction. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4174–4178. doi: 10.1073/pnas.80.13.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Begum N., Tepperman H. M., Tepperman J. Studies on the effects of protease substrate analogues on some of the actions of insulin. Biochem Biophys Res Commun. 1985 Jan 16;126(1):489–495. doi: 10.1016/0006-291x(85)90632-1. [DOI] [PubMed] [Google Scholar]
  4. Bergeron J. J., Cruz J., Khan M. N., Posner B. I. Uptake of insulin and other ligands into receptor-rich endocytic components of target cells: the endosomal apparatus. Annu Rev Physiol. 1985;47:383–403. doi: 10.1146/annurev.ph.47.030185.002123. [DOI] [PubMed] [Google Scholar]
  5. Berhanu P., Kolterman O. G., Baron A., Tsai P., Olefsky J. M., Brandenburg D. Insulin receptors in isolated human adipocytes. Characterization by photoaffinity labeling and evidence for internalization and cellular processing. J Clin Invest. 1983 Dec;72(6):1958–1970. doi: 10.1172/JCI111160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berhanu P., Olefsky J. M., Tsai P., Thamm P., Saunders D., Brandenburg D. Internalization and molecular processing of insulin receptors in isolated rat adipocytes. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4069–4073. doi: 10.1073/pnas.79.13.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brandenburg D., Diaconescu C., Saunders D., Thamm P. Covalent linking of photoreactive insulin to adipocytes produces a prolonged signal. Nature. 1980 Aug 21;286(5775):821–822. doi: 10.1038/286821a0. [DOI] [PubMed] [Google Scholar]
  8. Cherqui G., Caron M., Capeau J., Picard J. Further evidence for the involvement of a membrane proteolytic step in insulin action. Biochem J. 1985 Apr 1;227(1):137–147. doi: 10.1042/bj2270137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Couch C. B., Strittmatter W. J. Rat myoblast fusion requires metalloendoprotease activity. Cell. 1983 Jan;32(1):257–265. doi: 10.1016/0092-8674(83)90516-0. [DOI] [PubMed] [Google Scholar]
  10. Daukas G., Zigmond S. H. Inhibition of receptor-mediated but not fluid-phase endocytosis in polymorphonuclear leukocytes. J Cell Biol. 1985 Nov;101(5 Pt 1):1673–1679. doi: 10.1083/jcb.101.5.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies P. J., Davies D. R., Levitzki A., Maxfield F. R., Milhaud P., Willingham M. C., Pastan I. H. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature. 1980 Jan 10;283(5743):162–167. doi: 10.1038/283162a0. [DOI] [PubMed] [Google Scholar]
  12. Fehlmann M., Carpentier J. L., Le Cam A., Thamm P., Saunders D., Brandenburg D., Orci L., Freychet P. Biochemical and morphological evidence that the insulin receptor is internalized with insulin in hepatocytes. J Cell Biol. 1982 Apr;93(1):82–87. doi: 10.1083/jcb.93.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gavin J. R., 3rd, Roth J., Neville D. M., Jr, de Meyts P., Buell D. N. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A. 1974 Jan;71(1):84–88. doi: 10.1073/pnas.71.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gliemann J., Sonne O. Binding and receptor-mediated degradation of insulin in adipocytes. J Biol Chem. 1978 Nov 10;253(21):7857–7863. [PubMed] [Google Scholar]
  15. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  16. Green A., Olefsky J. M. Evidence for insulin-induced internalization and degradation of insulin receptors in rat adipocytes. Proc Natl Acad Sci U S A. 1982 Jan;79(2):427–431. doi: 10.1073/pnas.79.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haigler H. T., Maxfield F. R., Willingham M. C., Pastan I. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J Biol Chem. 1980 Feb 25;255(4):1239–1241. [PubMed] [Google Scholar]
  18. Jochen A. L., Berhanu P., Olefsky J. M. Insulin internalization and degradation in adipocytes from normal and type II diabetic subjects. J Clin Endocrinol Metab. 1986 Feb;62(2):268–274. doi: 10.1210/jcem-62-2-268. [DOI] [PubMed] [Google Scholar]
  19. Kaplan J., Ward D. M., Wiley H. S. Phenylarsine oxide-induced increase in alveolar macrophage surface receptors: evidence for fusion of internal receptor pools with the cell surface. J Cell Biol. 1985 Jul;101(1):121–129. doi: 10.1083/jcb.101.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knutson V. P., Ronnett G. V., Lane M. D. Rapid, reversible internalization of cell surface insulin receptors. Correlation with insulin-induced down-regulation. J Biol Chem. 1983 Oct 25;258(20):12139–12142. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Larkin J. M., Brown M. S., Goldstein J. L., Anderson R. G. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 May;33(1):273–285. doi: 10.1016/0092-8674(83)90356-2. [DOI] [PubMed] [Google Scholar]
  23. Larkin J. M., Donzell W. C., Anderson R. G. Modulation of intracellular potassium and ATP: effects on coated pit function in fibroblasts and hepatocytes. J Cell Physiol. 1985 Sep;124(3):372–378. doi: 10.1002/jcp.1041240303. [DOI] [PubMed] [Google Scholar]
  24. Marshall S. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors. J Biol Chem. 1985 Nov 5;260(25):13524–13531. [PubMed] [Google Scholar]
  25. Marshall S., Heidenreich K. A., Horikoshi H. Stoichiometric translocation of adipocyte insulin receptors from the cell-surface to the cell-interior. Studies using a novel method to rapidly remove detergent and concentrate soluble receptors. J Biol Chem. 1985 Apr 10;260(7):4128–4135. [PubMed] [Google Scholar]
  26. Muchmore D. B., Raess B. U., Bergstrom R. W., de Haën C. On the mechanisms of inhibition of insulin action by small-molecular-weight trypsin inhibitors. Diabetes. 1982 Nov;31(11):976–984. doi: 10.2337/diacare.31.11.976. [DOI] [PubMed] [Google Scholar]
  27. Mundy D. I., Strittmatter W. J. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells. Cell. 1985 Mar;40(3):645–656. doi: 10.1016/0092-8674(85)90213-2. [DOI] [PubMed] [Google Scholar]
  28. Nagy I., Makara G. B., Horváth G., Rappay G., Kurcz M., Bajusz S. Tripeptide aldehyde protease inhibitors may depress in vitro prolactin and growth hormone release. Endocrinology. 1985 Apr;116(4):1426–1432. doi: 10.1210/endo-116-4-1426. [DOI] [PubMed] [Google Scholar]
  29. Olefsky J. M., Kao M. Surface binding and rates of internalization of 125I-insulin in adipocytes and IM-9 lymphocytes. J Biol Chem. 1982 Aug 10;257(15):8667–8673. [PubMed] [Google Scholar]
  30. Purrello F., Vigneri R., Clawson G. A., Goldfine I. D. Insulin stimulation of nucleoside triphosphatase activity in isolated nuclear envelopes. Science. 1982 May 28;216(4549):1005–1007. doi: 10.1126/science.6281885. [DOI] [PubMed] [Google Scholar]
  31. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  32. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  33. Smith R. M., Jarett L. Quantitative ultrastructural analysis of receptor-mediated insulin uptake into adipocytes. J Cell Physiol. 1983 May;115(2):199–207. doi: 10.1002/jcp.1041150215. [DOI] [PubMed] [Google Scholar]
  34. Sonne O., Simpson I. A. Internalization of insulin and its receptor in the isolated rat adipose cell. Time-course and insulin concentration dependency. Biochim Biophys Acta. 1984 Aug 17;804(4):404–413. doi: 10.1016/0167-4889(84)90067-3. [DOI] [PubMed] [Google Scholar]
  35. Tamura S., Schwartz C. F., Whipple J. H., Dubler R. E., Fujita-Yamaguchi Y., Larner J. Selective inhibition of the insulin-stimulated phosphorylation of the 95,000 dalton subunit of the insulin receptor by TAME or BAEE. Biochem Biophys Res Commun. 1984 Mar 15;119(2):465–472. doi: 10.1016/s0006-291x(84)80272-7. [DOI] [PubMed] [Google Scholar]
  36. Ueda M., Robinson F. W., Smith M. M., Kono T. Effects of monensin on insulin processing in adipocytes. Evidence that the internalized insulin-receptor complex has some physiological activities. J Biol Chem. 1985 Apr 10;260(7):3941–3946. [PubMed] [Google Scholar]
  37. Wallace R. A., Ho T. Protein incorporation by isolated amphibian oocytes. II. A survey of inhibitors. J Exp Zool. 1972 Sep;181(3):303–317. doi: 10.1002/jez.1401810303. [DOI] [PubMed] [Google Scholar]
  38. Wileman T., Harding C., Stahl P. Receptor-mediated endocytosis. Biochem J. 1985 Nov 15;232(1):1–14. doi: 10.1042/bj2320001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Willingham M. C., Pastan I. Endocytosis and exocytosis: current concepts of vesicle traffic in animal cells. Int Rev Cytol. 1984;92:51–92. doi: 10.1016/s0074-7696(08)61324-8. [DOI] [PubMed] [Google Scholar]
  40. van Leuven F. Human alpha 2 macroglobulin. Mol Cell Biochem. 1984;58(1-2):121–128. doi: 10.1007/BF00240611. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES