Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Feb 1;104(2):363–370. doi: 10.1083/jcb.104.2.363

Changes in the number of chick ciliary ganglion neuron processes with time in cell culture

PMCID: PMC2114409  PMID: 3805124

Abstract

The purpose of this study was to describe the shape of chick ciliary ganglion neurons dissociated from embryonic day 8 or 9 ganglia and maintained in vitro. Most of the neurons were multipolar during the first three days after plating, with an average of 6.0 processes extending directly from the cell body. The neurons became unipolar with time. The remaining primary process accounted for greater than 90% of the total neuritic arbor. This striking change in morphology was not due to the selective loss of multipolar cells, or to an obvious decline in the health of apparently intact cells. The retraction of processes was neither prevented nor promoted by the presence of embryonic muscle cells. Process pruning occurred to the same extent and over the same time course whether the cells were plated on a monolayer of embryonic myotubes or on a layer of lysed fibroblasts. Process retraction is not an inevitable consequence of our culture conditions. Motoneurons dissociated from embryonic spinal cords remained multipolar over the same period of time. We conclude that ciliary ganglion neurons breed true in dissociated cell culture in that the multipolar-unipolar transition reflects their normal, in vivo, developmental program.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argiro V., Bunge M. B., Johnson M. I. Correlation between growth form and movement and their dependence on neuronal age. J Neurosci. 1984 Dec;4(12):3051–3062. doi: 10.1523/JNEUROSCI.04-12-03051.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argiro V., Johnson M. I. Patterns and kinetics of neurite extension from sympathetic neurons in culture are age dependent. J Neurosci. 1982 Apr;2(4):503–512. doi: 10.1523/JNEUROSCI.02-04-00503.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banker G. A., Cowan W. M. Further observations on hippocampal neurons in dispersed cell culture. J Comp Neurol. 1979 Oct 1;187(3):469–493. doi: 10.1002/cne.901870302. [DOI] [PubMed] [Google Scholar]
  4. Banker G. A., Cowan W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977 May 13;126(3):397–342. doi: 10.1016/0006-8993(77)90594-7. [DOI] [PubMed] [Google Scholar]
  5. Bartlett W. P., Banker G. A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J Neurosci. 1984 Aug;4(8):1944–1953. doi: 10.1523/JNEUROSCI.04-08-01944.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bartlett W. P., Banker G. A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. II. Synaptic relationships. J Neurosci. 1984 Aug;4(8):1954–1965. doi: 10.1523/JNEUROSCI.04-08-01954.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berg D. K. New neuronal growth factors. Annu Rev Neurosci. 1984;7:149–170. doi: 10.1146/annurev.ne.07.030184.001053. [DOI] [PubMed] [Google Scholar]
  8. Betz W. J., Caldwell J. H., Ribchester R. R. The effects of partial denervation at birth on the development of muscle fibres and motor units in rat lumbrical muscle. J Physiol. 1980 Jun;303:265–279. doi: 10.1113/jphysiol.1980.sp013284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bray D. Branching patterns of individual sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):702–712. doi: 10.1083/jcb.56.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown M. C., Jansen J. K., Van Essen D. Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J Physiol. 1976 Oct;261(2):387–422. doi: 10.1113/jphysiol.1976.sp011565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caceres A., Banker G., Steward O., Binder L., Payne M. MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res. 1984 Apr;315(2):314–318. doi: 10.1016/0165-3806(84)90167-6. [DOI] [PubMed] [Google Scholar]
  12. Choi D. W., Fischbach G. D. GABA conductance of chick spinal cord and dorsal root ganglion neurons in cell culture. J Neurophysiol. 1981 Apr;45(4):605–620. doi: 10.1152/jn.1981.45.4.605. [DOI] [PubMed] [Google Scholar]
  13. Collins F. Axon initiation by ciliary neurons in culture. Dev Biol. 1978 Jul;65(1):50–57. doi: 10.1016/0012-1606(78)90178-1. [DOI] [PubMed] [Google Scholar]
  14. Collins F., Dawson A. Conditioned medium increases the rate of neurite elongation: separation of this activity from the substratum-bound inducer of neurite outgrowth. J Neurosci. 1982 Aug;2(8):1005–1010. doi: 10.1523/JNEUROSCI.02-08-01005.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Collins F., Lee M. R. Reversible developmental change in the ability of ciliary ganglion neurons to extend neurites in culture. J Neurosci. 1982 Apr;2(4):424–430. doi: 10.1523/JNEUROSCI.02-04-00424.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
  17. Cáceres A., Banker G. A., Binder L. Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J Neurosci. 1986 Mar;6(3):714–722. doi: 10.1523/JNEUROSCI.06-03-00714.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fischbach G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol. 1972 Jun;28(2):407–429. doi: 10.1016/0012-1606(72)90023-1. [DOI] [PubMed] [Google Scholar]
  19. Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gurney M. E. Suppression of sprouting at the neuromuscular junction by immune sera. Nature. 1984 Feb 9;307(5951):546–548. doi: 10.1038/307546a0. [DOI] [PubMed] [Google Scholar]
  21. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  22. Heathcote R. D., Sargent P. B. Loss of supernumerary axons during neuronal morphogenesis. J Neurosci. 1985 Jul;5(7):1940–1946. doi: 10.1523/JNEUROSCI.05-07-01940.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Helfand S. L., Smith G. A., Wessells N. K. Survival and development in culture of dissociated parasympathetic neurons from ciliary ganglia. Dev Biol. 1976 Jun;50(2):541–547. doi: 10.1016/0012-1606(76)90174-3. [DOI] [PubMed] [Google Scholar]
  24. Henderson C. E., Huchet M., Changeux J. P. Neurite outgrowth from embryonic chicken spinal neurons is promoted by media conditioned by muscle cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2625–2629. doi: 10.1073/pnas.78.4.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Henderson C. E., Huchet M., Changeux J. P. Neurite-promoting activities for embryonic spinal neurons and their developmental changes in the chick. Dev Biol. 1984 Aug;104(2):336–347. doi: 10.1016/0012-1606(84)90089-7. [DOI] [PubMed] [Google Scholar]
  26. Hirokawa N., Glicksman M. A., Willard M. B. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol. 1984 Apr;98(4):1523–1536. doi: 10.1083/jcb.98.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jhaveri S., Morest D. K. Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: a Golgi study. Neuroscience. 1982 Apr;7(4):837–853. doi: 10.1016/0306-4522(82)90046-x. [DOI] [PubMed] [Google Scholar]
  28. Kriegstein A. R., Dichter M. A. Morphological classification of rat cortical neurons in cell culture. J Neurosci. 1983 Aug;3(8):1634–1647. doi: 10.1523/JNEUROSCI.03-08-01634.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Landis S. C. Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4220–4224. doi: 10.1073/pnas.73.11.4220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Landmesser L., Pilar G. Fate of ganglionic synapses and ganglion cell axons during normal and induced cell death. J Cell Biol. 1976 Feb;68(2):357–374. doi: 10.1083/jcb.68.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Landmesser L., Pilar G. Synapse formation during embryogenesis on ganglion cells lacking a periphery. J Physiol. 1974 Sep;241(3):715–736. doi: 10.1113/jphysiol.1974.sp010680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Landmesser L., Pilar G. Synaptic transmission and cell death during normal ganglionic development. J Physiol. 1974 Sep;241(3):737–749. doi: 10.1113/jphysiol.1974.sp010681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Landmesser L., Pilar G. The onset and development of transmission in the chick ciliary ganglion. J Physiol. 1972 May;222(3):691–713. doi: 10.1113/jphysiol.1972.sp009822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Neale E. A., Macdonald R. L., Nelson P. G. Intracellular horseradish peroxidase injection for correlation of light and electron microscopic anatomy with synaptic physiology of cultured mouse spinal cord neurons. Brain Res. 1978 Aug 25;152(2):265–282. doi: 10.1016/0006-8993(78)90255-x. [DOI] [PubMed] [Google Scholar]
  35. Nishi R., Berg D. K. Dissociated ciliary ganglion neurons in vitro: survival and synapse formation. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5171–5175. doi: 10.1073/pnas.74.11.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nishi R., Berg D. K. Survival and development of ciliary ganglion neurones grown alone in cell culture. Nature. 1979 Jan 18;277(5693):232–234. doi: 10.1038/277232a0. [DOI] [PubMed] [Google Scholar]
  37. O'Brien R. J., Fischbach G. D. Isolation of embryonic chick motoneurons and their survival in vitro. J Neurosci. 1986 Nov;6(11):3265–3274. doi: 10.1523/JNEUROSCI.06-11-03265.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pilar G., Landmesser L., Burstein L. Competition for survival among developing ciliary ganglion cells. J Neurophysiol. 1980 Jan;43(1):233–254. doi: 10.1152/jn.1980.43.1.233. [DOI] [PubMed] [Google Scholar]
  39. Role L. W., Matossian V. R., O'Brien R. J., Fischbach G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J Neurosci. 1985 Aug;5(8):2197–2204. doi: 10.1523/JNEUROSCI.05-08-02197.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Role L. W., Roufa D. G., Fischbach G. D. The distribution of acetylcholine receptor clusters and sites of transmitter release along chick ciliary ganglion neurite-myotube contacts in culture. J Cell Biol. 1987 Feb;104(2):371–379. doi: 10.1083/jcb.104.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Solomon F. Detailed neurite morphologies of sister neurolbastoma cells are related. Cell. 1979 Jan;16(1):165–169. doi: 10.1016/0092-8674(79)90197-1. [DOI] [PubMed] [Google Scholar]
  42. Solomon F. Neuroblastoma cells recapitulate their detailed neurite morphologies after reversible microtubule disassembly. Cell. 1980 Sep;21(2):333–338. doi: 10.1016/0092-8674(80)90469-9. [DOI] [PubMed] [Google Scholar]
  43. Solomon F. Specification of cell morphology by endogenous determinants. J Cell Biol. 1981 Sep;90(3):547–553. doi: 10.1083/jcb.90.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Spiegelman B. M., Lopata M. A., Kirschner M. W. Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell. 1979 Feb;16(2):253–263. doi: 10.1016/0092-8674(79)90003-5. [DOI] [PubMed] [Google Scholar]
  45. Tuttle J. B., Suszkiw J. B., Ard M. Long-term survival and development of dissociated parasympathetic neurons in culture. Brain Res. 1980 Feb 3;183(1):161–180. doi: 10.1016/0006-8993(80)90127-4. [DOI] [PubMed] [Google Scholar]
  46. Varon S., Manthorpe M., Adler R. Cholinergic neuronotrophic factors: I. Survival, neurite outgrowth and choline acetyltransferase activity in monolayer cultures from chick embryo ciliary ganglia. Brain Res. 1979 Sep 7;173(1):29–45. doi: 10.1016/0006-8993(79)91093-x. [DOI] [PubMed] [Google Scholar]
  47. Wakshull E., Johnson M. I., Burton H. Postnatal rat sympathetic neurons in culture. I. A comparison with embryonic neurons. J Neurophysiol. 1979 Sep;42(5):1410–1425. doi: 10.1152/jn.1979.42.5.1410. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES