Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Feb 1;104(2):355–362. doi: 10.1083/jcb.104.2.355

Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins

PMCID: PMC2114414  PMID: 3543026

Abstract

We have developed an in vitro assay which measures the ability of growth cones to extend on an axonal substrate. Neurite lengths were compared in the presence or absence of monovalent antibodies against specific neural cell surface glycoproteins. Fab fragments of antibodies against the neural cell adhesion molecule, NCAM, have an insignificant effect on the lengths of neurites elongating on either an axonal substrate or a laminin substrate. Fab fragments of polyclonal antibodies against two new neural cell surface antigens, defined by mAb G4 and mAb F11, decrease the lengths of neurites elongating on an axonal substrate, but have no effect on the lengths of neurites elongating on a laminin substrate. G4 antigen is related to mouse L1, while F11 antigen appears to be distinct from all known neural cell surface glycoproteins. Our results suggest that the G4 and F11 antigens help to promote the extension of growth cones on axons.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Ghaith L. K., Lewis J. H. Pioneer growth cones in virgin mesenchyme: an electron-microscope study in the developing chick wing. J Embryol Exp Morphol. 1982 Apr;68:149–160. [PubMed] [Google Scholar]
  2. Bottenstein J. E., Skaper S. D., Varon S. S., Sato G. H. Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium. Exp Cell Res. 1980 Jan;125(1):183–190. doi: 10.1016/0014-4827(80)90202-5. [DOI] [PubMed] [Google Scholar]
  3. Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
  4. Davies S. N., Kitson D. L., Roberts A. The development of the peripheral trigeminal innervation in Xenopus embryos. J Embryol Exp Morphol. 1982 Aug;70:215–224. [PubMed] [Google Scholar]
  5. Edelman G. M. Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Annu Rev Neurosci. 1984;7:339–377. doi: 10.1146/annurev.ne.07.030184.002011. [DOI] [PubMed] [Google Scholar]
  6. Fischer G., Künemund V., Schachner M. Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J Neurosci. 1986 Feb;6(2):605–612. doi: 10.1523/JNEUROSCI.06-02-00605.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henke-Fahle S., Bonhoeffer F. Inhibition of axonal growth by a monoclonal antibody. Nature. 1983 May 5;303(5912):65–67. doi: 10.1038/303065a0. [DOI] [PubMed] [Google Scholar]
  8. Ho R. K., Goodman C. S. Peripheral pathways are pioneered by an array of central and peripheral neurones in grasshopper embryos. Nature. 1982 Jun 3;297(5865):404–406. doi: 10.1038/297404a0. [DOI] [PubMed] [Google Scholar]
  9. Hoffman S., Friedlander D. R., Chuong C. M., Grumet M., Edelman G. M. Differential contributions of Ng-CAM and N-CAM to cell adhesion in different neural regions. J Cell Biol. 1986 Jul;103(1):145–158. doi: 10.1083/jcb.103.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuwada J. Y. Cell recognition by neuronal growth cones in a simple vertebrate embryo. Science. 1986 Aug 15;233(4765):740–746. doi: 10.1126/science.3738507. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lindner J., Rathjen F. G., Schachner M. L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. 1983 Sep 29-Oct 5Nature. 305(5933):427–430. doi: 10.1038/305427a0. [DOI] [PubMed] [Google Scholar]
  13. Lopresti V., Macagno E. R., Levinthal C. Structure and development of neuronal connections in isogenic organisms: cellular interactions in the development of the optic lamina of Daphnia. Proc Natl Acad Sci U S A. 1973 Feb;70(2):433–437. doi: 10.1073/pnas.70.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nishi R., Berg D. K. Dissociated ciliary ganglion neurons in vitro: survival and synapse formation. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5171–5175. doi: 10.1073/pnas.74.11.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Raper J. A., Bastiani M. J., Goodman C. S. Pathfinding by neuronal growth cones in grasshopper embryos. IV. The effects of ablating the A and P axons upon the behavior of the G growth cone. J Neurosci. 1984 Sep;4(9):2329–2345. doi: 10.1523/JNEUROSCI.04-09-02329.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raper J. A., Bastiani M., Goodman C. S. Pathfinding by neuronal growth cones in grasshopper embryos. II. Selective fasciculation onto specific axonal pathways. J Neurosci. 1983 Jan;3(1):31–41. doi: 10.1523/JNEUROSCI.03-01-00031.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rathjen F. G., Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984 Jan;3(1):1–10. doi: 10.1002/j.1460-2075.1984.tb01753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rathjen F. G., Wolff J. M., Frank R., Bonhoeffer F., Rutishauser U. Membrane glycoproteins involved in neurite fasciculation. J Cell Biol. 1987 Feb;104(2):343–353. doi: 10.1083/jcb.104.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rutishauser U. Developmental biology of a neural cell adhesion molecule. Nature. 1984 Aug 16;310(5978):549–554. doi: 10.1038/310549a0. [DOI] [PubMed] [Google Scholar]
  20. Rutishauser U., Gall W. E., Edelman G. M. Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J Cell Biol. 1978 Nov;79(2 Pt 1):382–393. doi: 10.1083/jcb.79.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stallcup W. B., Beasley L. Involvement of the nerve growth factor-inducible large external glycoprotein (NILE) in neurite fasciculation in primary cultures of rat brain. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1276–1280. doi: 10.1073/pnas.82.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tosney K. W., Landmesser L. T. Development of the major pathways for neurite outgrowth in the chick hindlimb. Dev Biol. 1985 May;109(1):193–214. doi: 10.1016/0012-1606(85)90360-4. [DOI] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolff J. M., Pfeifle J., Hollman M., Anderer F. A. Immunodetection of nitrocellulose-adhesive proteins at the nanogram level after trinitrophenyl modification. Anal Biochem. 1985 Jun;147(2):396–400. doi: 10.1016/0003-2697(85)90288-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES