Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Feb 1;104(2):253–262. doi: 10.1083/jcb.104.2.253

Phosphorylation, glycosylation, and proteolytic activity of the 52-kD estrogen-induced protein secreted by MCF7 cells

PMCID: PMC2114416  PMID: 3543022

Abstract

We have studied the posttranslational modifications of the 52-kD protein, an estrogen-regulated autocrine mitogen secreted by several human breast cancer cells in culture (Westley, B., and H. Rochefort, 1980, Cell, 20:353-362). The secreted 52-kD protein was found to be phosphorylated mostly (94%) on high-mannose N-linked oligosaccharide chains, and mannose-6-phosphate signals were identified. The phosphate signal was totally removed by alkaline phosphatase hydrolysis. The secreted 52-kD protein was partly taken up by MCF7 cells via mannose-6- phosphate receptors and processed into 48- and 34-kD protein moieties as with lysosomal hydrolases. By electron microscopy, immunoperoxidase staining revealed most of the reactive proteins in lysosomes. After complete purification by immunoaffinity chromatography, we identified both the secreted 52-kD protein and its processed cellular forms as aspartic and acidic proteinases specifically inhibited by pepstatin. The 52-kD protease is secreted in breast cancer cells under its inactive proenzyme form, which can be autoactivated at acidic pH with a slight decrease of molecular mass. The enzyme of breast cancer cells, when compared with cathepsin D(s) of normal tissue, was found to be similar in molecular weight, enzymatic activities (inhibitors, substrates, specific activities), and immunoreactivity. However, the 52- kD protein and its cellular processed forms of breast cancer cells were totally sensitive to endo-beta-N-acetylglucosaminidase H (Endo H), whereas several cellular cathepsin D(s) of normal tissue were partially Endo H-resistant. This difference, in addition to others concerning tissue distribution, mitogenic activity and hormonal regulation, strongly suggests that the 52-kD cathepsin D-like enzyme of breast cancer cells is different from previously described cathepsin D(s). The 52-kD estrogen-induced lysosomal proteinase may have important functions in facilitating the mammary cancer cells to proliferate, migrate, and metastasize.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J. Cathepsin D. Purification of isoenzymes from human and chicken liver. Biochem J. 1970 Apr;117(3):601–607. doi: 10.1042/bj1170601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop J. M. Cancer genes come of age. Cell. 1983 Apr;32(4):1018–1020. doi: 10.1016/0092-8674(83)90284-2. [DOI] [PubMed] [Google Scholar]
  3. Broquet P., Leon M., Louisot P. Substrate specificity of cerebral GDP-fucose: glycoprotein fucosyltransferase. Eur J Biochem. 1982 Mar;123(1):9–13. doi: 10.1111/j.1432-1033.1982.tb06491.x. [DOI] [PubMed] [Google Scholar]
  4. Butler W. B., Kirkland W. L., Jorgensen T. L. Induction of plasminogen activator by estrogen in a human breast cancer cell line (MCF-7). Biochem Biophys Res Commun. 1979 Oct 29;90(4):1328–1334. doi: 10.1016/0006-291x(79)91181-1. [DOI] [PubMed] [Google Scholar]
  5. Capony F., Garcia M., Capdevielle J., Rougeot C., Ferrara P., Rochefort H. Purification and first characterization of the secreted and cellular 52-kDa proteins regulated by estrogens in human-breast cancer cells. Eur J Biochem. 1986 Dec 1;161(2):505–512. doi: 10.1111/j.1432-1033.1986.tb10471.x. [DOI] [PubMed] [Google Scholar]
  6. Capony F., Garcia M., Veith F., Rochefort H. Antibodies to the estrogen induced 52 K protein released by human breast cancer cells. Biochem Biophys Res Commun. 1982 Sep 16;108(1):8–15. doi: 10.1016/0006-291x(82)91824-1. [DOI] [PubMed] [Google Scholar]
  7. Capony J. P., Demaille J. G. A rapid microdetermination of phosphoserine, phosphothreonine, and phosphotyrosine in proteins by automatic cation exchange on a conventional amino acid analyzer. Anal Biochem. 1983 Jan;128(1):206–212. doi: 10.1016/0003-2697(83)90365-2. [DOI] [PubMed] [Google Scholar]
  8. Carney D. H., Cunningham D. D. Role of specific cell surface receptors in thrombin-stimulated cell division. Cell. 1978 Dec;15(4):1341–1349. doi: 10.1016/0092-8674(78)90059-4. [DOI] [PubMed] [Google Scholar]
  9. Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
  10. Dickson R. B., Huff K. K., Spencer E. M., Lippman M. E. Induction of epidermal growth factor-related polypeptides by 17 beta-estradiol in MCF-7 human breast cancer cells. Endocrinology. 1986 Jan;118(1):138–142. doi: 10.1210/endo-118-1-138. [DOI] [PubMed] [Google Scholar]
  11. Dingle J. T., Barrett A. J., Weston P. D. Cathepsin D. Characteristics of immunoinhibition and the confirmation of a role in cartilage breakdown. Biochem J. 1971 Jun;123(1):1–13. doi: 10.1042/bj1230001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faust P. L., Kornfeld S., Chirgwin J. M. Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4910–4914. doi: 10.1073/pnas.82.15.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gal S., Gottesman M. M. The major excreted protein of transformed fibroblasts is an activable acid-protease. J Biol Chem. 1986 Feb 5;261(4):1760–1765. [PubMed] [Google Scholar]
  14. Garcia M., Capony F., Derocq D., Simon D., Pau B., Rochefort H. Characterization of monoclonal antibodies to the estrogen-regulated Mr 52,000 glycoprotein and their use in MCF7 cells. Cancer Res. 1985 Feb;45(2):709–716. [PubMed] [Google Scholar]
  15. Garcia M., Salazar-Retana G., Pages A., Richer G., Domergue J., Pages A. M., Cavalie G., Martin J. M., Lamarque J. L., Pau B. Distribution of the Mr 52,000 estrogen-regulated protein in benign breast diseases and other tissues by immunohistochemistry. Cancer Res. 1986 Jul;46(7):3734–3738. [PubMed] [Google Scholar]
  16. Garcia M., Salazar-Retana G., Richer G., Domergue J., Capony F., Pujol H., Laffargue F., Pau B., Rochefort H. Immunohistochemical detection of the estrogen-regulated 52,000 mol wt protein in primary breast cancers but not in normal breast and uterus. J Clin Endocrinol Metab. 1984 Sep;59(3):564–566. doi: 10.1210/jcem-59-3-564. [DOI] [PubMed] [Google Scholar]
  17. Gieselmann V., Hasilik A., von Figura K. Processing of human cathepsin D in lysosomes in vitro. J Biol Chem. 1985 Mar 10;260(5):3215–3220. [PubMed] [Google Scholar]
  18. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  19. Hasilik A., Von Figura K. Oligosaccharides in lysosomal enzymes. Distribution of high-mannose and complex oligosaccharides in cathepsin D and beta-hexosaminidase. Eur J Biochem. 1981 Dec;121(1):125–129. doi: 10.1111/j.1432-1033.1981.tb06440.x. [DOI] [PubMed] [Google Scholar]
  20. Hasilik A., von Figura K., Conzelmann E., Nehrkorn H., Sandhoff K. Lysosomal enzyme precursors in human fibroblasts. Activation of cathepsin D precursor in vitro and activity of beta-hexosaminidase A precursor towards ganglioside GM2. Eur J Biochem. 1982 Jul;125(2):317–321. doi: 10.1111/j.1432-1033.1982.tb06685.x. [DOI] [PubMed] [Google Scholar]
  21. Heldin C. H., Westermark B. Growth factors: mechanism of action and relation to oncogenes. Cell. 1984 May;37(1):9–20. doi: 10.1016/0092-8674(84)90296-4. [DOI] [PubMed] [Google Scholar]
  22. Hickman S., Neufeld E. F. A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun. 1972 Nov 15;49(4):992–999. doi: 10.1016/0006-291x(72)90310-5. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Liotta L. A. Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 1986 Jan;46(1):1–7. [PubMed] [Google Scholar]
  25. Lippman M., Bolan G., Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1976 Dec;36(12):4595–4601. [PubMed] [Google Scholar]
  26. Manni A., Wright C., Feil P., Baranao L., Demers L., Garcia M., Rochefort H. Autocrine stimulation by estradiol-regulated growth factors of rat hormone-responsive mammary cancer: interaction with the polyamine pathway. Cancer Res. 1986 Apr;46(4 Pt 1):1594–1598. [PubMed] [Google Scholar]
  27. Massot O., Baskevitch P. P., Capony F., Garcia M., Rochefort H. Estradiol increases the production of alpha 1-antichymotrypsin in MCF7 and T47D human breast cancer cell lines. Mol Cell Endocrinol. 1985 Oct;42(3):207–214. doi: 10.1016/0303-7207(85)90050-4. [DOI] [PubMed] [Google Scholar]
  28. Matrisian L. M., Glaichenhaus N., Gesnel M. C., Breathnach R. Epidermal growth factor and oncogenes induce transcription of the same cellular mRNA in rat fibroblasts. EMBO J. 1985 Jun;4(6):1435–1440. doi: 10.1002/j.1460-2075.1985.tb03799.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mitrovic D. R., Gruson M., Ryckewaert A. Local hyperthermia and cartilage breakdown: histochemical and metabolic studies on rabbit articular cartilage in vitro. J Rheumatol. 1981 Mar-Apr;8(2):193–203. [PubMed] [Google Scholar]
  30. Morisset M., Capony F., Rochefort H. The 52-kDa estrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease. Biochem Biophys Res Commun. 1986 Jul 16;138(1):102–109. doi: 10.1016/0006-291x(86)90252-4. [DOI] [PubMed] [Google Scholar]
  31. Puizdar V., Turk V. Cathepsinogen D: characterization and activation to cathepsin D and inhibitory peptides. FEBS Lett. 1981 Sep 28;132(2):299–304. doi: 10.1016/0014-5793(81)81184-2. [DOI] [PubMed] [Google Scholar]
  32. Rochefort H., Chalbos D., Capony F., Garcia M., Veith F., Vignon F., Westley B. Effect of estrogen in breast cancer cells in culture: released proteins and control of cell proliferation. Prog Clin Biol Res. 1984;142:37–51. [PubMed] [Google Scholar]
  33. Ryan T. J., Seeger J. I., Kumar S. A., Dickerman H. W. Estradiol preferentially enhances extracellular tissue plasminogen activators of MCF-7 breast cancer cells. J Biol Chem. 1984 Dec 10;259(23):14324–14327. [PubMed] [Google Scholar]
  34. Sahagian G. G., Gottesman M. M. The predominant secreted protein of transformed murine fibroblasts carries the lysosomal mannose 6-phosphate recognition marker. J Biol Chem. 1982 Sep 25;257(18):11145–11150. [PubMed] [Google Scholar]
  35. Salomon D. S., Zwiebel J. A., Bano M., Losonczy I., Fehnel P., Kidwell W. R. Presence of transforming growth factors in human breast cancer cells. Cancer Res. 1984 Sep;44(9):4069–4077. [PubMed] [Google Scholar]
  36. Soule H. D., Vazguez J., Long A., Albert S., Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973 Nov;51(5):1409–1416. doi: 10.1093/jnci/51.5.1409. [DOI] [PubMed] [Google Scholar]
  37. Sporn M. B., Todaro G. J. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980 Oct 9;303(15):878–880. doi: 10.1056/NEJM198010093031511. [DOI] [PubMed] [Google Scholar]
  38. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  39. Tabas I., Kornfeld S. Biosynthetic intermediates of beta-glucuronidase contain high mannose oligosaccharides with blocked phosphate residues. J Biol Chem. 1980 Jul 25;255(14):6633–6639. [PubMed] [Google Scholar]
  40. Touitou I., Garcia M., Westley B., Capony F., Rochefort H. Effect of tunicamycin and endoglycosidase H and F on the estrogen regulated 52000-Mr protein secreted by breast cancer cells. Biochimie. 1985 Dec;67(12):1257–1266. doi: 10.1016/s0300-9084(85)80135-8. [DOI] [PubMed] [Google Scholar]
  41. Vignon F., Capony F., Chambon M., Freiss G., Garcia M., Rochefort H. Autocrine growth stimulation of the MCF 7 breast cancer cells by the estrogen-regulated 52 K protein. Endocrinology. 1986 Apr;118(4):1537–1545. doi: 10.1210/endo-118-4-1537. [DOI] [PubMed] [Google Scholar]
  42. Vignon F., Derocq D., Chambon M., Rochefort H. Les protéines oestrogéno-induites sécrétées par les cellules mammaires cancéreuses humaines MCF7 stimulent leur prolifération. C R Seances Acad Sci III. 1983 Jan 24;296(3):151–156. [PubMed] [Google Scholar]
  43. Westley B., May F. E., Brown A. M., Krust A., Chambon P., Lippman M. E., Rochefort H. Effects of antiestrogens on the estrogen-regulated pS2 RNA and the 52- and 160-kilodalton proteins in MCF7 cells and two tamoxifen-resistant sublines. J Biol Chem. 1984 Aug 25;259(16):10030–10035. [PubMed] [Google Scholar]
  44. Westley B., Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell. 1980 Jun;20(2):353–362. doi: 10.1016/0092-8674(80)90621-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES