Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Feb 1;104(2):321–329. doi: 10.1083/jcb.104.2.321

Topography of cell wall lytic enzyme in Chlamydomonas reinhardtii: form and location of the stored enzyme in vegetative cell and gamete

PMCID: PMC2114421  PMID: 2879847

Abstract

Chlamydomonas lytic enzyme of the cell wall (gamete wall-autolysin) is responsible for shedding of cell walls during mating of opposite mating- type gametes. This paper reports some topographic aspects of lytic enzyme in cells. Both vegetative and gametic cells contain the same wall lytic enzyme. The purified enzyme is a glycoprotein with an apparent molecular mass of 67 kD by gel filtration and 62 kD by SDS PAGE, and is sensitive to metal ion chelators and SH-blocking agents. These properties are the same as those of the gamete wall-autolysin released into the medium by mating gametes. However, the storage form of the enzyme proves to be quite different between the two cell types. In vegetative cells, the lytic enzyme is found in an insoluble form in cell homogenates and activity is released into the soluble fraction only by sonicating the homogenates or freeze-thawing the cells, whereas gametes always yield lytic activity in the soluble fractions of cell homogenates. When vegetative cells are starved for nitrogen, the storage form of enzyme shifts from its vegetative state to gametic state in parallel with the acquisition of mating ability. Adding nitrogen to gametes converts it to the vegetative state concurrently with the loss of mating ability. We also show that protoplasts obtained by treatment of vegetative cells or gametes with exogenously added enzyme have little activity of enzyme in the cell homogenates, suggesting that lytic enzyme is stored outside the plasmalemma. When the de-walled gametes or gametes of the wall-deficient mutant, cw-15, of opposite mating types are mixed together, they mate normally but the release of lytic enzyme into the medium is practically negligible. When the de-walled vegetative cells are incubated, the lytic enzyme is again accumulated in the cells after the wall regeneration is almost complete.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Claes H. Autolyse der Zellwand bei den Gemeten von Chlamydomonas reinhardii. Arch Mikrobiol. 1971;78(2):180–188. [PubMed] [Google Scholar]
  2. Claes H. Non-specific stimulation of the autolytic system in gametes from Chlamydomonas reinhardii. Exp Cell Res. 1977 Aug;108(1):221–229. [PubMed] [Google Scholar]
  3. Goodenough U. W., Detmers P. A., Hwang C. Activation for cell fusion in Chlamydomonas: analysis of wild-type gametes and nonfusing mutants. J Cell Biol. 1982 Feb;92(2):378–386. doi: 10.1083/jcb.92.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goodenough U. W., Heuser J. E. The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J Cell Biol. 1985 Oct;101(4):1550–1568. doi: 10.1083/jcb.101.4.1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hien N. H., Fleet G. H. Separation and characterization of six (1 leads to 3)-beta-glucanases from Saccharomyces cerevisiae. J Bacteriol. 1983 Dec;156(3):1204–1213. doi: 10.1128/jb.156.3.1204-1213.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hien N. H., Fleet G. H. Variation of (1 leads to 3)-beta-glucanases in Saccharomyces cerevisiae during vegetative growth, conjugation, and sporulation. J Bacteriol. 1983 Dec;156(3):1214–1221. doi: 10.1128/jb.156.3.1214-1221.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Imam S. H., Buchanan M. J., Shin H. C., Snell W. J. The Chlamydomonas cell wall: characterization of the wall framework. J Cell Biol. 1985 Oct;101(4):1599–1607. doi: 10.1083/jcb.101.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  9. Loppes R., Matagne R. F. Acid phosphatase mutants in Chlamydomonas: isolation and characterization by biochemical, electrophoretic and genetic analysis. Genetics. 1973 Dec;75(4):593–604. doi: 10.1093/genetics/75.4.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loppes R. Release of enzymes by normal and wall-free cells of Chlamydomonas. J Bacteriol. 1976 Oct;128(1):114–116. doi: 10.1128/jb.128.1.114-116.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MacIntyre R. J. A method for measuring activities of acid phosphatases separated by acrylamide gel electrophoresis. Biochem Genet. 1971 Feb;5(1):45–56. doi: 10.1007/BF00485729. [DOI] [PubMed] [Google Scholar]
  12. Martin N. C., Goodenough U. W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol. 1975 Dec;67(3):587–605. doi: 10.1083/jcb.67.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matagne R. F., Loppes R., Deltour R. Phosphatase of Chlamydomonas reinhardi: biochemical and cytochemical approach with specific mutants. J Bacteriol. 1976 May;126(2):937–950. doi: 10.1128/jb.126.2.937-950.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsuda Y., Saito T., Yamaguchi T., Kawase H. Cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii is a metalloprotease and digests the sodium perchlorate-insoluble component of cell wall. J Biol Chem. 1985 May 25;260(10):6373–6377. [PubMed] [Google Scholar]
  15. Millikin B. E., Weiss R. L. Distribution of concanavalin a binding carbohydrates during mating in Chlamydomonas. J Cell Sci. 1984 Mar;66:223–239. doi: 10.1242/jcs.66.1.223. [DOI] [PubMed] [Google Scholar]
  16. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  17. Roberts K., Gurney-Smith M., Hills G. J. Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. I. Ultrastructure and preliminary chemical analysis. J Ultrastruct Res. 1972 Sep;40(5):599–613. doi: 10.1016/s0022-5320(72)80046-7. [DOI] [PubMed] [Google Scholar]
  18. SAGER R., GRANICK S. Nutritional control of sexuality in Chlamydomonas reinhardi. J Gen Physiol. 1954 Jul 20;37(6):729–742. doi: 10.1085/jgp.37.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Snell W. J. Study of the release of cell wall degrading enzymes during adhesion of Chlamydomonas gametes. Exp Cell Res. 1982 Mar;138(1):109–119. doi: 10.1016/0014-4827(82)90096-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES