Abstract
By using fluorescently labeled phalloidin we have examined, at the light microscope level, the three-dimensional distribution and reorganization of actin-like microfilaments (mfs) during plant cell cycle and differentiation. At interphase, mfs are organized into three distinct yet interconnected arrays: fine peripheral networks close to the plasma membrane; large axially oriented cables in the subcortical region; a nuclear "basket" of mfs extending into the transvacuolar strands. All these arrays, beginning with the peripheral network, disappear at the onset of mitosis and reappear, beginning with the nuclear basket, after cytokinesis. During mitotic and cytokinetic events, mfs are associated with the spindle and phragmoplast. Actin staining in the spindle is localized between the chromosomes and the spindle poles and changes in a functionally specific manner. The nuclear region appears to be the center for mf organization and/or initiation. During differentiation from rapid cell division to cell elongation, mf arrays switch from an axial to a transverse orientation, thus paralleling the microtubules. This change in orientation reflects a shift in the direction of cytoplasmic streaming. These observations show for the first time that actin-like mfs form intricate and dynamic arrays in plant cells which may be involved in many as yet undescribed cell functions.
Full Text
The Full Text of this article is available as a PDF (3.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubin J. E., Alders E., Heersche J. N. A primary role for microfilaments, but not microtubules, in hormone-induced cytoplasmic retraction. Exp Cell Res. 1983 Feb;143(2):439–450. doi: 10.1016/0014-4827(83)90070-8. [DOI] [PubMed] [Google Scholar]
- Barak L. S., Nothnagel E. A., DeMarco E. F., Webb W. W. Differential staining of actin in metaphase spindles with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and fluorescent DNase: is actin involved in chromosomal movement? Proc Natl Acad Sci U S A. 1981 May;78(5):3034–3038. doi: 10.1073/pnas.78.5.3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. M., Jr Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl. 1985;2:13–32. doi: 10.1242/jcs.1985.supplement_2.2. [DOI] [PubMed] [Google Scholar]
- Clayton L., Lloyd C. W. Actin organization during the cell cycle in meristematic plant cells. Actin is present in the cytokinetic phragmoplast. Exp Cell Res. 1985 Jan;156(1):231–238. doi: 10.1016/0014-4827(85)90277-0. [DOI] [PubMed] [Google Scholar]
- Connolly J. A., Kalnins V. I., Barber B. H. Microtubules and microfilaments during cell spreading and colony formation in PK 15 epithelial cells. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6922–6926. doi: 10.1073/pnas.78.11.6922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeRosier D. J., Tilney L. G. How actin filaments pack into bundles. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):525–540. doi: 10.1101/sqb.1982.046.01.049. [DOI] [PubMed] [Google Scholar]
- Forer A. Does actin produce the force that moves a chromosome to the pole during anaphase? Can J Biochem Cell Biol. 1985 Jun;63(6):585–598. doi: 10.1139/o85-077. [DOI] [PubMed] [Google Scholar]
- Forer A., Jackson W. T. Actin in spindles of Haemanthus katherinae endosperm. I. General results using various glycerination methods. J Cell Sci. 1979 Jun;37:323–347. doi: 10.1242/jcs.37.1.323. [DOI] [PubMed] [Google Scholar]
- Forer A., Jackson W. T., Engberg A. Actin in spindles of Haemanthus katherinae endosperm. II. Distribution of actin in chromosomal spindle fibres, determined by analysis of serial sections. J Cell Sci. 1979 Jun;37:349–371. doi: 10.1242/jcs.37.1.349. [DOI] [PubMed] [Google Scholar]
- Gabbiani G., Gabbiani F., Heimark R. L., Schwartz S. M. Organization of actin cytoskeleton during early endothelial regeneration in vitro. J Cell Sci. 1984 Mar;66:39–50. doi: 10.1242/jcs.66.1.39. [DOI] [PubMed] [Google Scholar]
- Gamborg O. L., Miller R. A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968 Apr;50(1):151–158. doi: 10.1016/0014-4827(68)90403-5. [DOI] [PubMed] [Google Scholar]
- Kaiho M., Sato A. Circular distribution of microfilaments in cells spreading in vitro. Exp Cell Res. 1978 Apr;113(1):222–227. doi: 10.1016/0014-4827(78)90106-4. [DOI] [PubMed] [Google Scholar]
- Nagata K., Ichikawa Y. Changes in actin during cell differentiation. Cell Muscle Motil. 1984;5:171–193. doi: 10.1007/978-1-4684-4592-3_4. [DOI] [PubMed] [Google Scholar]
- Pesacreta T. C., Carley W. W., Webb W. W., Parthasarathy M. V. F-actin in conifer roots. Proc Natl Acad Sci U S A. 1982 May;79(9):2898–2901. doi: 10.1073/pnas.79.9.2898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Aebi U., Cooper J. A., Fowler W. E., Tseng P. Actin structure, polymerization, and gelation. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):513–524. doi: 10.1101/sqb.1982.046.01.048. [DOI] [PubMed] [Google Scholar]
- Scher B. M., Scher W., Yeh H. S., Waxman S. G-actin and F-actin levels at different stages of mouse erythroid differentiation. Cell Biol Int Rep. 1983 Aug;7(8):661–667. doi: 10.1016/0309-1651(83)90121-2. [DOI] [PubMed] [Google Scholar]
- Seagull R. W., Heath I. B. The effects of tannic acid on the in vivo preservation of microfilaments. Eur J Cell Biol. 1979 Dec;20(2):184–188. [PubMed] [Google Scholar]
- Seagull R. W. The role of the cytoskeleton during oriented microfibril deposition. I. Elucidation of the possible interaction between microtubules and cellulose synthetic complexes. J Ultrastruct Res. 1983 May;83(2):168–175. doi: 10.1016/s0022-5320(83)90074-6. [DOI] [PubMed] [Google Scholar]
- Tiwari S. C., Wick S. M., Williamson R. E., Gunning B. E. Cytoskeleton and integration of cellular function in cells of higher plants. J Cell Biol. 1984 Jul;99(1 Pt 2):63s–69s. doi: 10.1083/jcb.99.1.63s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traas J. A., Braat P., Emons A. M., Meekes H., Derksen J. Microtubules in root hairs. J Cell Sci. 1985 Jun;76:303–320. doi: 10.1242/jcs.76.1.303. [DOI] [PubMed] [Google Scholar]
- Wang Y. L., Taylor D. L. Distribution of fluorescently labeled actin in living sea urchin eggs during early development. J Cell Biol. 1979 Jun;81(3):672–679. doi: 10.1083/jcb.81.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieland T. Modification of actins by phallotoxins. Naturwissenschaften. 1977 Jun;64(6):303–309. doi: 10.1007/BF00446784. [DOI] [PubMed] [Google Scholar]
- Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]