Abstract
The two forms of clathrin light chains (LCA and LCB) or clathrin- associated proteins (CAP1 and CAP2) have presented an immunochemical paradox. Biochemically similar, both possess two known functional parameters: binding the clathrin heavy chain and mediating the action of an uncoating ATPase. All previously reported anti-CAP mAbs, however, react specifically with only CAP1 (Brodsky, F. M., 1985, J. Cell Biol., 101:2047-2054; Kirchhausen, T., S. C. Harrison, P. Parham, and F. M. Brodsky, 1983, Proc. Natl. Acad. Sci. USA, 80:2481-2485). Four new anti- CAP mAbs are reported here: two, C-7H12 and C-6C1, react with both forms; two others, C-10B2 and C-4E5, react only with the lower form. Sandwich ELISAs indicated that C-10B2, C-4E5, C-6C1, and C-7H12 react with distinct epitopes. Monoclonal antibodies C-10B2 and C-4E5 immunoprecipitate clathrin-coated vesicles (CCVs) and react with CAP2 epitopes accessible to chymotrypsin on the vesicle. These mAbs inhibit phosphorylation of CAP2 by endogenous CCV casein kinase II. In contrast, C-6C1 and C-7H12 react with epitopes that are relatively insensitive to chymotrypsin. CAP peptide fragments containing these epitopes remain bound to reassembled cages or CCVs after digestion. Immunoprecipitation and ELISAs demonstrate that C-7H12 and C-6C1 react with unbound CAPs but not with CAPs bound to triskelions or CCVs. The data indicate that the CAPs consist of at least two discernible structural domains: a nonconserved, accessible domain that is relevant to the phosphorylation of CAP2 and a conserved, inaccessible domain that mediates the binding of CAPs to CCVs.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bar-Zvi D., Branton D. Clathrin-coated vesicles contain two protein kinase activities. Phosphorylation of clathrin beta-light chain by casein kinase II. J Biol Chem. 1986 Jul 25;261(21):9614–9621. [PubMed] [Google Scholar]
- Brodsky F. M. Clathrin structure characterized with monoclonal antibodies. I. Analysis of multiple antigenic sites. J Cell Biol. 1985 Dec;101(6):2047–2054. doi: 10.1083/jcb.101.6.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geysen H. M., Barteling S. J., Meloen R. H. Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc Natl Acad Sci U S A. 1985 Jan;82(1):178–182. doi: 10.1073/pnas.82.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes N., Biermann J. S., Brodsky F. M., Bharucha D., Parham P. Comparison of the primary structures of clathrin light chains from bovine brain and adrenal gland by peptide mapping. EMBO J. 1984 Jul;3(7):1621–1627. doi: 10.1002/j.1460-2075.1984.tb02020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchhausen T., Harrison S. C., Parham P., Brodsky F. M. Location and distribution of the light chains in clathrin trimers. Proc Natl Acad Sci U S A. 1983 May;80(9):2481–2485. doi: 10.1073/pnas.80.9.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchhausen T., Harrison S. C. Protein organization in clathrin trimers. Cell. 1981 Mar;23(3):755–761. doi: 10.1016/0092-8674(81)90439-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lisanti M. P., Schook W., Moskowitz N., Ores C., Puszkin S. Brain clathrin and clathrin-associated proteins. Biochem J. 1982 Feb 1;201(2):297–304. doi: 10.1042/bj2010297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisanti M. P., Shapiro L. S., Moskowitz N., Hua E. L., Puszkin S., Schook W. Isolation and preliminary characterization of clathrin-associated proteins. Eur J Biochem. 1982 Jul;125(2):463–470. doi: 10.1111/j.1432-1033.1982.tb06706.x. [DOI] [PubMed] [Google Scholar]
- Pfeffer S. R., Kelly R. B. Identification of minor components of coated vesicles by use of permeation chromatography. J Cell Biol. 1981 Nov;91(2 Pt 1):385–391. doi: 10.1083/jcb.91.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid S. L., Braell W. A., Schlossman D. M., Rothman J. E. A role for clathrin light chains in the recognition of clathrin cages by 'uncoating ATPase'. Nature. 1984 Sep 20;311(5983):228–231. doi: 10.1038/311228a0. [DOI] [PubMed] [Google Scholar]
- Schook W. J., Puszkin S. Brain clathrin light chain 2 can be phosphorylated by a coated vesicle kinase. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8039–8043. doi: 10.1073/pnas.82.23.8039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usami M., Takahashi A., Kadota T., Katoda K. Phosphorylation of a clathrin light chain of coated vesicles in the presence of histones. J Biochem. 1985 Jun;97(6):1819–1822. doi: 10.1093/oxfordjournals.jbchem.a135243. [DOI] [PubMed] [Google Scholar]
- Winkler F. K., Stanley K. K. Clathrin heavy chain, light chain interactions. EMBO J. 1983;2(8):1393–1400. doi: 10.1002/j.1460-2075.1983.tb01597.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
