Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Apr 1;104(4):841–847. doi: 10.1083/jcb.104.4.841

Expression of the Ca2+-binding protein, parvalbumin, during embryonic development of the frog, Xenopus laevis

PMCID: PMC2114428  PMID: 3558484

Abstract

A cDNA segment encoding the Ca2+-binding protein, parvalbumin, was isolated with the use of antibodies, from a lambda gtll expression library of Xenopus laevis tadpole poly(A)+ RNAs. The bacterially expressed beta-galactosidase-parvalbumin fusion protein of one lambda recombinant shows high affinity 45Ca2+ binding. The sequence of the tadpole parvalbumin is highly similar to previously characterized beta- parvalbumins of other organisms. Data from protein and RNA blotting experiments demonstrate that parvalbumin is absent in oocytes, eggs, and early staged embryos, and only becomes expressed during embryogenesis at the time of myogenesis. The protein can be detected in individual developing muscle cells and in muscle fibers of tadpole tail muscles. A simple method is also described for the isolation of neural tube-notochord-somite complexes from Xenopus embryos.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berchtold M. W., Celio M. R., Heizmann C. W. Parvalbumin in non-muscle tissues of the rat. Quantitation and immunohistochemical localization. J Biol Chem. 1984 Apr 25;259(8):5189–5196. [PubMed] [Google Scholar]
  2. Berchtold M. W., Heizmann C. W., Wilson K. J. Primary structure of parvalbumin from rat skeletal muscle. Eur J Biochem. 1982 Oct;127(2):381–389. doi: 10.1111/j.1432-1033.1982.tb06883.x. [DOI] [PubMed] [Google Scholar]
  3. Boynton A. L., MacManus J. P., Whitfield J. F. Stimulation of liver cell DNA synthesis by oncomodulin, an MW 11 500 calcium-binding protein from hepatoma. Exp Cell Res. 1982 Apr;138(2):454–457. doi: 10.1016/0014-4827(82)90198-7. [DOI] [PubMed] [Google Scholar]
  4. Cannell M. B., Allen D. G. Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J. 1984 May;45(5):913–925. doi: 10.1016/S0006-3495(84)84238-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capony J. P., Demaille J., Pina C., Pechère J. F. The amino-acid sequence of the most acidic major parvalbumin from frog muscle. Eur J Biochem. 1975 Aug 1;56(1):215–227. doi: 10.1111/j.1432-1033.1975.tb02224.x. [DOI] [PubMed] [Google Scholar]
  6. Carpenter C. D., Bruskin A. M., Hardin P. E., Keast M. J., Anstrom J., Tyner A. L., Brandhorst B. P., Klein W. H. Novel proteins belonging to the troponin C superfamily are encoded by a set of mRNAs in sea urchin embryos. Cell. 1984 Mar;36(3):663–671. doi: 10.1016/0092-8674(84)90346-5. [DOI] [PubMed] [Google Scholar]
  7. Chien Y. H., Dawid I. B. Isolation and characterization of calmodulin genes from Xenopus laevis. Mol Cell Biol. 1984 Mar;4(3):507–513. doi: 10.1128/mcb.4.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coffee C. J., Bradshaw R. A. Carp muscle calcium-binding protein. I. Characterization of the tryptic peptides and the complete amino acid sequence of component B. J Biol Chem. 1973 May 10;248(9):3305–3312. [PubMed] [Google Scholar]
  9. Devlin R. B., Emerson C. P., Jr Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell. 1978 Apr;13(4):599–611. doi: 10.1016/0092-8674(78)90211-8. [DOI] [PubMed] [Google Scholar]
  10. Dworkin M. B., Dawid I. B. Construction of a cloned library of expressed embryonic gene sequences from Xenopus laevis. Dev Biol. 1980 May;76(2):435–448. doi: 10.1016/0012-1606(80)90392-9. [DOI] [PubMed] [Google Scholar]
  11. Epstein P., Means A. R., Berchtold M. W. Isolation of a rat parvalbumin gene and full length cDNA. J Biol Chem. 1986 May 5;261(13):5886–5891. [PubMed] [Google Scholar]
  12. Gillis J. M., Thomason D., Lefèvre J., Kretsinger R. H. Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil. 1982 Dec;3(4):377–398. doi: 10.1007/BF00712090. [DOI] [PubMed] [Google Scholar]
  13. Goodman M., Pechère J. F., Haiech J., Demaille J. G. Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. J Mol Evol. 1979 Nov;13(4):331–352. doi: 10.1007/BF01731373. [DOI] [PubMed] [Google Scholar]
  14. Haiech J., Derancourt J., Pechère J. F., Demaille J. G. Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry. 1979 Jun 26;18(13):2752–2758. doi: 10.1021/bi00580a010. [DOI] [PubMed] [Google Scholar]
  15. Hardin S. H., Carpenter C. D., Hardin P. E., Bruskin A. M., Klein W. H. Structure of the Spec1 gene encoding a major calcium-binding protein in the embryonic ectoderm of the sea urchin, Strongylocentrotus purpuratus. J Mol Biol. 1985 Nov 20;186(2):243–255. doi: 10.1016/0022-2836(85)90101-9. [DOI] [PubMed] [Google Scholar]
  16. Heizmann C. W., Berchtold M. W., Rowlerson A. M. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7243–7247. doi: 10.1073/pnas.79.23.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heizmann C. W. Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia. 1984 Sep 15;40(9):910–921. doi: 10.1007/BF01946439. [DOI] [PubMed] [Google Scholar]
  18. Heizmann C. W., Strehler E. E. Chicken parvalbumin. Comparison with parvalbumin-like protein and three other components (Mr = 8,000 to 13,000). J Biol Chem. 1979 May 25;254(10):4296–4303. [PubMed] [Google Scholar]
  19. Jauregui-Adell J., Pechere J. F., Briand G., Richet C., Demaille J. G. Amino-acid sequence of an alpha-parvalbumin, pI = 4.88, from frog skeletal muscle. Eur J Biochem. 1982 Apr 1;123(2):337–345. doi: 10.1111/j.1432-1033.1982.tb19773.x. [DOI] [PubMed] [Google Scholar]
  20. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kretsinger R. H. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8(2):119–174. doi: 10.3109/10409238009105467. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  24. Lynn D. A., Angerer L. M., Bruskin A. M., Klein W. H., Angerer R. C. Localization of a family of MRNAS in a single cell type and its precursors in sea urchin embryos. Proc Natl Acad Sci U S A. 1983 May;80(9):2656–2660. doi: 10.1073/pnas.80.9.2656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MacManus J. P., Watson D. C., Yaguchi M. A new member of the troponin C superfamily: comparison of the primary structures of rat oncomodulin and rat parvalbumin. Biosci Rep. 1983 Nov;3(11):1071–1075. doi: 10.1007/BF01121034. [DOI] [PubMed] [Google Scholar]
  26. MacManus J. P., Whitfield J. F., Stewart D. J. The presence in human tumours of a Mr 11,700 calcium-binding protein similar to rodent oncomodulin. Cancer Lett. 1984 Jan;21(3):309–315. doi: 10.1016/0304-3835(84)90010-7. [DOI] [PubMed] [Google Scholar]
  27. Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
  28. Muntz L. Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802). J Embryol Exp Morphol. 1975 Jun;33(3):757–774. [PubMed] [Google Scholar]
  29. Newport J., Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell. 1982 Oct;30(3):675–686. doi: 10.1016/0092-8674(82)90272-0. [DOI] [PubMed] [Google Scholar]
  30. Pfyffer G. E., Haemmerli G., Heizmann C. W. Calcium-binding proteins in human carcinoma cell lines. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6632–6636. doi: 10.1073/pnas.81.21.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stuhlfauth I., Reininghaus J., Jockusch H., Heizmann C. W. Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4814–4818. doi: 10.1073/pnas.81.15.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES