Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Apr 1;104(4):981–993. doi: 10.1083/jcb.104.4.981

Movement of the actin filament bundle in Mytilus sperm: a new mechanism is proposed

PMCID: PMC2114433  PMID: 2435743

Abstract

An actin filament bundle approximately 2-5 microns in length is present in the sperm of the blue mussel, Mytilus. In unfired sperm this bundle extends from the midpiece through a canal in the center of the nucleus to terminate on the membrane limiting the inside of the cone-shaped acrosomal vacuole. The bundle is composed of 45-65 actin filaments which are hexagonally packed and regularly cross-bridged together to form an actin paracrystal so well ordered that it has six nearly equal faces. Upon induction of the acrosomal reaction, a needle-like process is formed in a few seconds. Within this process is the actin filament bundle which appears unchanged in filament number and packing as determined by optical diffraction methods. Using fluorescein-conjugated phalloidin we were able to establish that the bundle does not change length but instead is projected anteriorly out of the midpiece and nuclear canal like an arrow. Existing mechanisms to explain this extension cannot apply. Specifically, the bundle does not increase in length (no polymerization), does not change its organization (no change in actin twist), does not change filament number (no filament sliding), and cannot move by myosin (wrong polarity). Thus we are forced to look elsewhere for a mechanism and have postulated that at least a component of this movement, or cell elongation, is the interaction of the actin filament bundle with the plasma membrane.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begg D. A., Rebhun L. I., Hyatt H. Structural organization of actin in the sea urchin egg cortex: microvillar elongation in the absence of actin filament bundle formation. J Cell Biol. 1982 Apr;93(1):24–32. doi: 10.1083/jcb.93.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chambers C., Grey R. D. Development of the structural components of the brush border in absorptive cells of the chick intestine. Cell Tissue Res. 1979;204(3):387–405. doi: 10.1007/BF00233651. [DOI] [PubMed] [Google Scholar]
  4. DeRosier D. J., Tilney L. G., Bonder E. M., Frankl P. A change in twist of actin provides the force for the extension of the acrosomal process in Limulus sperm: the false-discharge reaction. J Cell Biol. 1982 May;93(2):324–337. doi: 10.1083/jcb.93.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeRosier D. J., Tilney L. G. How actin filaments pack into bundles. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):525–540. doi: 10.1101/sqb.1982.046.01.049. [DOI] [PubMed] [Google Scholar]
  6. DeRosier D., Mandelkow E., Silliman A. Structure of actin-containing filaments from two types of non-muscle cells. J Mol Biol. 1977 Jul 15;113(4):679–695. doi: 10.1016/0022-2836(77)90230-3. [DOI] [PubMed] [Google Scholar]
  7. Edds K. T. The formation and elongation of filopodia during transformation of sea urchin coelomocytes. Cell Motil. 1980;1(1):131–140. doi: 10.1002/cm.970010110. [DOI] [PubMed] [Google Scholar]
  8. GOSTING L. J. Measurement and interpretation of diffusion coefficients of proteins. Adv Protein Chem. 1956;11:429–554. doi: 10.1016/s0065-3233(08)60425-8. [DOI] [PubMed] [Google Scholar]
  9. Inoué S., Tilney L. G. Acrosomal reaction of thyone sperm. I. Changes in the sperm head visualized by high resolution video microscopy. J Cell Biol. 1982 Jun;93(3):812–819. doi: 10.1083/jcb.93.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NIIJIMA L., DAN J. THE ACROSOME REACTION IN MYTILUS EDULIS. I. FINE STRUCTURE OF THE INTACT ACROSOME. J Cell Biol. 1965 May;25:243–248. doi: 10.1083/jcb.25.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. NIIJIMA L., DAN J. THE ACROSOME REACTION IN MYTILUS EDULIS. II. STAGES IN THE REACTION, OBSERVED IN SUPERNUMERARY AND CALCIUM-TREATED SPERMATOZOA. J Cell Biol. 1965 May;25:249–259. doi: 10.1083/jcb.25.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Otto J. J., Kane R. E., Bryan J. Formation of filopodia in coelomocytes: localization of fascin, a 58,000 dalton actin cross-linking protein. Cell. 1979 Jun;17(2):285–293. doi: 10.1016/0092-8674(79)90154-5. [DOI] [PubMed] [Google Scholar]
  13. Otto J. J., Kane R. E., Bryan J. Redistribution of actin and fascin in sea urchin eggs after fertilization. Cell Motil. 1980;1(1):31–40. doi: 10.1002/cm.970010104. [DOI] [PubMed] [Google Scholar]
  14. Schroeder T. E. Microvilli on sea urchin eggs: a second burst of elongation. Dev Biol. 1978 Jun;64(2):342–346. doi: 10.1016/0012-1606(78)90085-4. [DOI] [PubMed] [Google Scholar]
  15. Spudich A., Spudich J. A. Actin in triton-treated cortical preparations of unfertilized and fertilized sea urchin eggs. J Cell Biol. 1979 Jul;82(1):212–226. doi: 10.1083/jcb.82.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stidwill R. P., Burgess D. R. Regulation of intestinal brush border microvillus length during development by the G- to F-actin ratio. Dev Biol. 1986 Apr;114(2):381–388. doi: 10.1016/0012-1606(86)90202-2. [DOI] [PubMed] [Google Scholar]
  17. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tilney L. G., Bonder E. M., DeRosier D. J. Actin filaments elongate from their membrane-associated ends. J Cell Biol. 1981 Aug;90(2):485–494. doi: 10.1083/jcb.90.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tilney L. G., DeRosier D. J. Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev Biol. 1986 Jul;116(1):119–129. doi: 10.1016/0012-1606(86)90048-5. [DOI] [PubMed] [Google Scholar]
  20. Tilney L. G., Inoué S. Acrosomal reaction of the Thyone sperm. III. The relationship between actin assembly and water influx during the extension of the acrosomal process. J Cell Biol. 1985 Apr;100(4):1273–1283. doi: 10.1083/jcb.100.4.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G., Jaffe L. A. Actin, microvilli, and the fertilization cone of sea urchin eggs. J Cell Biol. 1980 Dec;87(3 Pt 1):771–782. doi: 10.1083/jcb.87.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tilney L. G., Tilney M. S. Functional organization of the cytoskeleton. Hear Res. 1986;22:55–77. doi: 10.1016/0378-5955(86)90077-8. [DOI] [PubMed] [Google Scholar]
  23. Yumura S., Fukui Y. Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium. Nature. 1985 Mar 14;314(6007):194–196. doi: 10.1038/314194a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES