Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Apr 1;104(4):925–932. doi: 10.1083/jcb.104.4.925

Stimulus-specific induction of phospholipid and arachidonic acid metabolism in human neutrophils

PMCID: PMC2114434  PMID: 3104352

Abstract

Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. Stimulated increases in PLC activity correlated with enhanced superoxide generation induced by the stimulus.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Badwey J. A., Curnutte J. T., Karnovsky M. L. cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils. J Biol Chem. 1981 Dec 25;256(24):12640–12643. [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billah M. M., Bryant R. W., Siegel M. I. Lipoxygenase products of arachidonic acid modulate biosynthesis of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by human neutrophils via phospholipase A2. J Biol Chem. 1985 Jun 10;260(11):6899–6906. [PubMed] [Google Scholar]
  5. Billah M. M., Lapetina E. G., Cuatrecasas P. Phospholipase A2 and phospholipase C activities of platelets. Differential substrate specificity, Ca2+ requirement, pH dependence, and cellular localization. J Biol Chem. 1980 Nov 10;255(21):10227–10231. [PubMed] [Google Scholar]
  6. Bokoch G. M., Reed P. W. Stimulation of arachidonic acid metabolism in the polymorphonuclear leukocyte by an N-formylated peptide. Comparison with ionophore A23187. J Biol Chem. 1980 Nov 10;255(21):10223–10226. [PubMed] [Google Scholar]
  7. Bomalaski J. S., Clark M. A., Douglas S. D., Zurier R. B. Enhanced phospholipase A2 and C activities of peripheral blood polymorphonuclear leukocytes from patients with rheumatoid arthritis. J Leukoc Biol. 1985 Nov;38(5):649–654. doi: 10.1002/jlb.38.5.649. [DOI] [PubMed] [Google Scholar]
  8. Borgeat P., Samuelsson B. Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc Natl Acad Sci U S A. 1979 May;76(5):2148–2152. doi: 10.1073/pnas.76.5.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bormann B. J., Huang C. K., Mackin W. M., Becker E. L. Receptor-mediated activation of a phospholipase A2 in rabbit neutrophil plasma membrane. Proc Natl Acad Sci U S A. 1984 Feb;81(3):767–770. doi: 10.1073/pnas.81.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  11. Bradford P. G., Rubin R. P. Characterization of formylmethionyl-leucyl-phenylalanine stimulation of inositol trisphosphate accumulation in rabbit neutrophils. Mol Pharmacol. 1985 Jan;27(1):74–78. [PubMed] [Google Scholar]
  12. Clancy R. M., Dahinden C. A., Hugli T. E. Arachidonate metabolism by human polymorphonuclear leukocytes stimulated by N-formyl-Met-Leu-Phe or complement component C5a is independent of phospholipase activation. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7200–7204. doi: 10.1073/pnas.80.23.7200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clark M. A., Littlejohn D., Conway T. M., Mong S., Steiner S., Crooke S. T. Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity. J Biol Chem. 1986 Aug 15;261(23):10713–10718. [PubMed] [Google Scholar]
  14. Curnutte J. T. Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J Clin Invest. 1985 May;75(5):1740–1743. doi: 10.1172/JCI111885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Curnutte J. T., Badwey J. A., Robinson J. M., Karnovsky M. J., Karnovsky M. L. Studies on the mechanism of superoxide release from human neutrophils stimulated with arachidonate. J Biol Chem. 1984 Oct 10;259(19):11851–11857. [PubMed] [Google Scholar]
  16. Farber J. L. The role of calcium in cell death. Life Sci. 1981 Sep 28;29(13):1289–1295. doi: 10.1016/0024-3205(81)90670-6. [DOI] [PubMed] [Google Scholar]
  17. Fujita I., Irita K., Takeshige K., Minakami S. Diacylglycerol, 1-oleoyl-2-acetyl-glycerol, stimulates superoxide-generation from human neutrophils. Biochem Biophys Res Commun. 1984 Apr 30;120(2):318–324. doi: 10.1016/0006-291x(84)91256-7. [DOI] [PubMed] [Google Scholar]
  18. Hoffstein S. T., Gennaro D. E., Manzi R. M. Surface contact inhibits neutrophil superoxide generation induced by soluble stimuli. Lab Invest. 1985 May;52(5):515–522. [PubMed] [Google Scholar]
  19. Hofmann S. L., Majerus P. W. Modulation of phosphatidylinositol-specific phospholipase C activity by phospholipid interactions, diglycerides, and calcium ions. J Biol Chem. 1982 Dec 10;257(23):14359–14364. [PubMed] [Google Scholar]
  20. Humes J. L., Sadowski S., Galavage M., Goldenberg M., Subers E., Bonney R. J., Kuehl F. A., Jr Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J Biol Chem. 1982 Feb 25;257(4):1591–1594. [PubMed] [Google Scholar]
  21. Hyman B. T., Spector A. A. Choline uptake in cultured human Y79 retinoblastoma cells: effect of polyunsaturated fatty acid compositional modifications. J Neurochem. 1982 Mar;38(3):650–656. doi: 10.1111/j.1471-4159.1982.tb08680.x. [DOI] [PubMed] [Google Scholar]
  22. Im W. B., Deutchler J. T., Spector A. A. Effects of membrane fatty acid composition on sodium-independent phenylalanine transport in Ehrlich cells. Lipids. 1979 Dec;14(12):1003–1008. doi: 10.1007/BF02533437. [DOI] [PubMed] [Google Scholar]
  23. Korte K., Casey M. L. Phospholipid and neutral lipid separation by one-dimensional thin-layer chromatography. J Chromatogr. 1982 Oct 8;232(1):47–53. doi: 10.1016/s0378-4347(00)86006-5. [DOI] [PubMed] [Google Scholar]
  24. Lee T. H., Mencia-Huerta J. M., Shih C., Corey E. J., Lewis R. A., Austen K. F. Effects of exogenous arachidonic, eicosapentaenoic, and docosahexaenoic acids on the generation of 5-lipoxygenase pathway products by ionophore-activated human neutrophils. J Clin Invest. 1984 Dec;74(6):1922–1933. doi: 10.1172/JCI111612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Okajima F., Ui M. ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2+-mobilizing biosignaling. J Biol Chem. 1984 Nov 25;259(22):13863–13871. [PubMed] [Google Scholar]
  26. Peters S. P., MacGlashan D. W., Jr, Schulman E. S., Schleimer R. P., Hayes E. C., Rokach J., Adkinson N. F., Jr, Lichtenstein L. M. Arachidonic acid metabolism in purified human lung mast cells. J Immunol. 1984 Apr;132(4):1972–1979. [PubMed] [Google Scholar]
  27. Rhodes J., Salmon J., Wood J. Macrophage Fc gamma 2b receptor expression and receptor-mediated phospholipase activity: regulation by endogenous eicosanoids. Eur J Immunol. 1985 Mar;15(3):222–227. doi: 10.1002/eji.1830150304. [DOI] [PubMed] [Google Scholar]
  28. Rittenhouse-Simmons S. Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest. 1979 Apr;63(4):580–587. doi: 10.1172/JCI109339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rittenhouse-Simmons S., Russell F. A., Deykin D. Mobilization of arachidonic acid in human platelets. Kinetics and Ca2+ dependency. Biochim Biophys Acta. 1977 Sep 28;488(3):370–380. doi: 10.1016/0005-2760(77)90196-5. [DOI] [PubMed] [Google Scholar]
  30. Schroeder F. Isothermal regulation of membrane fluidity in murine fibroblasts with altered phospholipid polar head groups. Biochim Biophys Acta. 1978 Aug 17;511(3):356–376. doi: 10.1016/0005-2736(78)90273-0. [DOI] [PubMed] [Google Scholar]
  31. Schroit A. J., Gallily R. Macrophage fatty acid composition and phagocytosis: effect of unsaturation on cellular phagocytic activity. Immunology. 1979 Feb;36(2):199–205. [PMC free article] [PubMed] [Google Scholar]
  32. Serhan C. N., Broekman M. J., Korchak H. M., Marcus A. J., Weissmann G. Endogenous phospholipid metabolism in stimulated neutrophils differential activation by FMLP and PMA. Biochem Biophys Res Commun. 1982 Aug;107(3):951–958. doi: 10.1016/0006-291x(82)90615-5. [DOI] [PubMed] [Google Scholar]
  33. Serhan C. N., Fridovich J., Goetzl E. J., Dunham P. B., Weissmann G. Leukotriene B4 and phosphatidic acid are calcium ionophores. Studies employing arsenazo III in liposomes. J Biol Chem. 1982 May 10;257(9):4746–4752. [PubMed] [Google Scholar]
  34. Serhan C. N., Radin A., Smolen J. E., Korchak H., Samuelsson B., Weissmann G. Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis. Biochem Biophys Res Commun. 1982 Aug;107(3):1006–1012. doi: 10.1016/0006-291x(82)90622-2. [DOI] [PubMed] [Google Scholar]
  35. Showell H. J., Naccache P. H., Borgeat P., Picard S., Vallerand P., Becker E. L., Sha'afi R. I. Characterization of the secretory activity of leukotriene B4 toward rabbit neutrophils. J Immunol. 1982 Feb;128(2):811–816. [PubMed] [Google Scholar]
  36. Stenson W. F., Parker C. W. Metabolism of arachidonic acid in ionophore-stimulated neutrophils. Esterification of a hydroxylated metabolite into phospholipids. J Clin Invest. 1979 Nov;64(5):1457–1465. doi: 10.1172/JCI109604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suzuki T., Saito-Taki T., Sadasivan R., Nitta T. Biochemical signal transmitted by Fc gamma receptors: phospholipase A2 activity of Fc gamma 2b receptor of murine macrophage cell line P388D1. Proc Natl Acad Sci U S A. 1982 Jan;79(2):591–595. doi: 10.1073/pnas.79.2.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Szamel M., Resch K. Modulation of enzyme activities in isolated lymphocyte plasma membranes by enzymatic modification of phospholipid fatty acids. J Biol Chem. 1981 Nov 25;256(22):11618–11623. [PubMed] [Google Scholar]
  39. Takenawa T., Homma Y., Nagai Y. Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide- or Ca2+ ionophore A23187-stimulated guinea pig neutrophils. J Immunol. 1983 Jun;130(6):2849–2855. [PubMed] [Google Scholar]
  40. Volpi M., Yassin R., Naccache P. H., Sha'afi R. I. Chemotactic factor causes rapid decreases in phosphatidylinositol,4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils. Biochem Biophys Res Commun. 1983 May 16;112(3):957–964. doi: 10.1016/0006-291x(83)91711-4. [DOI] [PubMed] [Google Scholar]
  41. Volpi M., Yassin R., Tao W., Molski T. F., Naccache P. H., Sha'afi R. I. Leukotriene B4 mobilizes calcium without the breakdown of polyphosphoinositides and the production of phosphatidic acid in rabbit neutrophils. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5966–5969. doi: 10.1073/pnas.81.19.5966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Waite M., DeChatelet L. R., King L., Shirley P. S. Phagocytosis-induced release of arachidonic acid from human neutrophils. Biochem Biophys Res Commun. 1979 Oct 12;90(3):984–992. doi: 10.1016/0006-291x(79)91924-7. [DOI] [PubMed] [Google Scholar]
  43. Walsh C. E., Waite B. M., Thomas M. J., DeChatelet L. R. Release and metabolism of arachidonic acid in human neutrophils. J Biol Chem. 1981 Jul 25;256(14):7228–7234. [PubMed] [Google Scholar]
  44. Williams J. D., Lee T. H., Lewis R. A., Austen F. Intracellular retention of the 5-lipoxygenase pathway product, leukotriene B4, by human neutrophils activated with unopsonized zymosan. J Immunol. 1985 Apr;134(4):2624–2630. [PubMed] [Google Scholar]
  45. Yano K., Hattori H., Imai A., Nozawa Y. Modification of positional distribution of fatty acids in phosphatidylinositol of rabbit neutrophils stimulated with formylmethionyl-leucyl-phenylalanine. Biochim Biophys Acta. 1983 Jun 16;752(1):137–144. doi: 10.1016/0005-2760(83)90241-2. [DOI] [PubMed] [Google Scholar]
  46. Zurier R. B., Hoffstein S., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J Cell Biol. 1973 Jul;58(1):27–41. doi: 10.1083/jcb.58.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES