Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Apr 1;104(4):1035–1046. doi: 10.1083/jcb.104.4.1035

Phase dynamics at microtubule ends: the coexistence of microtubule length changes and treadmilling

PMCID: PMC2114447  PMID: 3558477

Abstract

The length dynamics both of microtubule-associated protein (MAP)-rich and MAP-depleted bovine brain microtubules were examined at polymer mass steady state. In both preparations, the microtubules exhibited length redistributions shortly after polymer mass steady state was attained. With time, however, both populations relaxed to a state in which no further changes in length distributions could be detected. Shearing the microtubules or diluting the microtubule suspensions transiently increased the extent to which microtubule length redistributions occurred, but again the microtubules relaxed to a state in which changes in the polymer length distributions were not detected. Under steady-state conditions of constant polymer mass and stable microtubule length distribution, both MAP-rich and MAP-depleted microtubules exhibited behavior consistent with treadmilling. MAPs strongly suppressed the magnitude of length redistributions and the steady-state treadmilling rates. These data indicate that the inherent tendency of microtubules in vitro is to relax to a steady state in which net changes in the microtubule length distributions are zero. If the basis of the observed length redistributions is the spontaneous loss and regain of GTP-tubulin ("GTP caps") at microtubule ends, then in order to account for stable length distributions the microtubule ends must reside in the capped state far longer than in the uncapped state, and uncapped microtubule ends must be rapidly recapped. The data suggest that microtubules in cells may have an inherent tendency to remain in the polymerized state, and that microtubule disassembly must be induced actively.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asnes C. F., Wilson L. Isolation of bovine brain microtubule protein without glycerol: polymerization kinetics change during purification cycles. Anal Biochem. 1979 Sep 15;98(1):64–73. doi: 10.1016/0003-2697(79)90706-1. [DOI] [PubMed] [Google Scholar]
  2. Bergen L. G., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol. 1980 Jan;84(1):141–150. doi: 10.1083/jcb.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Caplow M., Shanks J., Brylawski B. P. Concerning the anomalous kinetic behavior of microtubules. J Biol Chem. 1985 Oct 15;260(23):12675–12679. [PubMed] [Google Scholar]
  5. Carlier M. F., Hill T. L., Chen Y. Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. Proc Natl Acad Sci U S A. 1984 Feb;81(3):771–775. doi: 10.1073/pnas.81.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlier M. F., Pantaloni D. Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry. 1981 Mar 31;20(7):1918–1924. doi: 10.1021/bi00510a030. [DOI] [PubMed] [Google Scholar]
  7. Chen Y., Hill T. L. Theoretical treatment of microtubules disappearing in solution. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4127–4131. doi: 10.1073/pnas.82.12.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cote R. H., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. J Mol Biol. 1981 Aug 25;150(4):577–599. doi: 10.1016/0022-2836(81)90382-x. [DOI] [PubMed] [Google Scholar]
  9. Farrell K. W., Himes R. H., Jordan M. A., Wilson L. On the nonlinear relationship between the initial rates of dilution-induced microtubule disassembly and the initial free subunit concentration. J Biol Chem. 1983 Dec 10;258(23):14148–14156. [PubMed] [Google Scholar]
  10. Farrell K. W., Jordan M. A. A kinetic analysis of assembly-disassembly at opposite microtubule ends. J Biol Chem. 1982 Mar 25;257(6):3131–3138. [PubMed] [Google Scholar]
  11. Farrell K. W., Kassis J. A., Wilson L. Outer doublet tubulin reassembly: evidence for opposite end assembly-disassembly at steady state and a disassembly end equilibrium. Biochemistry. 1979 Jun 12;18(12):2642–2647. doi: 10.1021/bi00579a033. [DOI] [PubMed] [Google Scholar]
  12. Farrell K. W., Wilson L. Tubulin-colchicine complexes differentially poison opposite microtubule ends. Biochemistry. 1984 Jul 31;23(16):3741–3748. doi: 10.1021/bi00311a027. [DOI] [PubMed] [Google Scholar]
  13. Gaskin F., Cantor C. R., Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol. 1974 Nov 15;89(4):737–755. doi: 10.1016/0022-2836(74)90048-5. [DOI] [PubMed] [Google Scholar]
  14. Hill T. L., Chen Y. Phase changes at the end of a microtubule with a GTP cap. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5772–5776. doi: 10.1073/pnas.81.18.5772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horio T., Hotani H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature. 1986 Jun 5;321(6070):605–607. doi: 10.1038/321605a0. [DOI] [PubMed] [Google Scholar]
  16. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  17. Job D., Pabion M., Margolis R. L. Generation of microtubule stability subclasses by microtubule-associated proteins: implications for the microtubule "dynamic instability" model. J Cell Biol. 1985 Nov;101(5 Pt 1):1680–1689. doi: 10.1083/jcb.101.5.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson K. A., Borisy G. G. Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol. 1977 Nov 25;117(1):1–31. doi: 10.1016/0022-2836(77)90020-1. [DOI] [PubMed] [Google Scholar]
  19. Johnson K. A., Borisy G. G. Thermodynamic analysis of microtubule self-assembly in vitro. J Mol Biol. 1979 Sep 15;133(2):199–216. doi: 10.1016/0022-2836(79)90530-8. [DOI] [PubMed] [Google Scholar]
  20. Jordan M. A., Farrell K. W. Differential radiolabeling of opposite microtubule ends: methodology, equilibrium exchange-flux analysis, and drug poisoning. Anal Biochem. 1983 Apr 1;130(1):41–53. doi: 10.1016/0003-2697(83)90647-4. [DOI] [PubMed] [Google Scholar]
  21. Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986 May 9;45(3):329–342. doi: 10.1016/0092-8674(86)90318-1. [DOI] [PubMed] [Google Scholar]
  23. Kristofferson D., Mitchison T., Kirschner M. Direct observation of steady-state microtubule dynamics. J Cell Biol. 1986 Mar;102(3):1007–1019. doi: 10.1083/jcb.102.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacNeal R. K., Webb B. C., Purich D. L. Neurotubule assembly at substoichiometric nucleotide levels using a GTP regenerating system. Biochem Biophys Res Commun. 1977 Jan 24;74(2):440–447. doi: 10.1016/0006-291x(77)90323-0. [DOI] [PubMed] [Google Scholar]
  25. Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
  26. Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
  27. Mitchison T., Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
  28. Rothwell S. W., Grasser W. A., Murphy D. B. Direct observation of microtubule treadmilling by electron microscopy. J Cell Biol. 1985 Nov;101(5 Pt 1):1637–1642. doi: 10.1083/jcb.101.5.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rothwell S. W., Grasser W. A., Murphy D. B. End-to-end annealing of microtubules in vitro. J Cell Biol. 1986 Feb;102(2):619–627. doi: 10.1083/jcb.102.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Salmon E. D. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Ann N Y Acad Sci. 1975 Jun 30;253:383–406. doi: 10.1111/j.1749-6632.1975.tb19216.x. [DOI] [PubMed] [Google Scholar]
  31. Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
  32. Wilson L., Farrell K. W. Kinetics and steady state dynamics of tubulin addition and loss at opposite microtubule ends: the mechanism of action of colchicine. Ann N Y Acad Sci. 1986;466:690–708. doi: 10.1111/j.1749-6632.1986.tb38452.x. [DOI] [PubMed] [Google Scholar]
  33. Wilson L., Miller H. P., Farrell K. W., Snyder K. B., Thompson W. C., Purich D. L. Taxol stabilization of microtubules in vitro: dynamics of tubulin addition and loss at opposite microtubule ends. Biochemistry. 1985 Sep 10;24(19):5254–5262. doi: 10.1021/bi00340a045. [DOI] [PubMed] [Google Scholar]
  34. Wilson L., Synder K. B., Thompson W. C., Margolis R. L. A rapid filtration assay for analysis of microtubule assembly, disassembly, and steady-state tubulin flux. Methods Cell Biol. 1982;24:159–169. doi: 10.1016/s0091-679x(08)60653-6. [DOI] [PubMed] [Google Scholar]
  35. Zeeberg B., Reid R., Caplow M. Incorporation of radioactive tubulin into microtubules at steady state. Experimental and theoretical analyses of diffusional and directional flux. J Biol Chem. 1980 Oct 25;255(20):9891–9899. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES