Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Apr 1;104(4):967–979. doi: 10.1083/jcb.104.4.967

Identification of sarcolemma-associated antigens with differential distributions on fast and slow skeletal muscle fibers

PMCID: PMC2114455  PMID: 3549741

Abstract

We have identified three sarcolemma-associated antigens, including two antigens that are differentially distributed on skeletal muscle fibers of the fast, fast/slow, and slow types. Monoclonal antibodies were prepared using partially purified membranes of adult chicken skeletal muscles as immunogens and were used to characterize three antigens associated with the sarcolemma of muscle fibers. Immunofluorescence staining of cryosections of adult and embryonic chicken muscles showed that two of the three antigens differed in expression by fibers depending on developmental age and whether the fibers were of the fast, fast/slow, or slow type. Fiber type was assigned by determining the content of fast and slow myosin heavy chain. MSA-55 was expressed equally by fibers of all types. In contrast, MSA-slow and MSA-140 differed in their expression by muscle fibers depending on fiber type. MSA-slow was detected exclusively at the periphery of fast/slow and slow fibers, but was not detected on fast fibers. MSA-140 was detected on all fibers but fast/slow and slow fibers stained more intensely suggesting that these fiber types contain more MSA-140 than fast fibers. These sarcolemma-associated antigens were developmentally regulated in ovo and in vitro. MSA-55 and MSA-140 were detected on all primary muscle fibers by day 8 in ovo of embryonic development, whereas MSA-slow was first detected on muscle fibers just before hatching. Those antigens expressed by fast fibers (MSA-55 and MSA-140) were expressed only after myoblasts differentiated into myotubes, but were not expressed by fibroblasts in cell culture. Each antigen was also detected in one or more nonskeletal muscle cell types: MSA-55 and MSA- slow in cardiac myocytes and smooth muscle of gizzard (but not vascular structures) and MSA-140 in cardiac myocytes and smooth muscle of vascular structures. MSA-55 was identified as an Mr 55,000, nonglycosylated, detergent-soluble protein, and MSA-140 was an Mr 140,000, cell surface protein. The Mr of MSA-slow could not be determined by immunoblotting or immunoprecipitation techniques. These findings indicate that muscle fibers of different physiological function differ in the components associated with the sarcolemma. While the function of these sarcolemma-associated antigens is unknown, their regulated appearance during development in ovo and as myoblasts differentiate in culture suggests that they may be important in the formation, maturation, and function of fast, fast/slow, and slow muscle fibers.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Fambrough D. M. Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. J Cell Biol. 1983 Nov;97(5 Pt 1):1396–1411. doi: 10.1083/jcb.97.5.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandman E., Matsuda R., Strohman R. C. Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev Biol. 1982 Oct;93(2):508–518. doi: 10.1016/0012-1606(82)90138-5. [DOI] [PubMed] [Google Scholar]
  3. Barnard E. A., Lyles J. M., Pizzey J. A. Fibre types in chicken skeletal muscles and their changes in muscular dystrophy. J Physiol. 1982 Oct;331:333–354. doi: 10.1113/jphysiol.1982.sp014375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayne E. K., Anderson M. J., Fambrough D. M. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J Cell Biol. 1984 Oct;99(4 Pt 1):1486–1501. doi: 10.1083/jcb.99.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borg T. K., Caulfield J. B. Morphology of connective tissue in skeletal muscle. Tissue Cell. 1980;12(1):197–207. doi: 10.1016/0040-8166(80)90061-0. [DOI] [PubMed] [Google Scholar]
  6. Buchthal F., Schmalbruch H. Motor unit of mammalian muscle. Physiol Rev. 1980 Jan;60(1):90–142. doi: 10.1152/physrev.1980.60.1.90. [DOI] [PubMed] [Google Scholar]
  7. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casadei J. M., Gordon R. D., Lampson L. A., Schotland D. L., Barchi R. L. Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6227–6231. doi: 10.1073/pnas.81.19.6227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Celio M. R., Heizmann C. W. Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature. 1982 Jun 10;297(5866):504–506. doi: 10.1038/297504a0. [DOI] [PubMed] [Google Scholar]
  10. Chen L. B. Alteration in cell surface LETS protein during myogenesis. Cell. 1977 Mar;10(3):393–400. doi: 10.1016/0092-8674(77)90026-5. [DOI] [PubMed] [Google Scholar]
  11. Chiquet M., Fambrough D. M. Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J Cell Biol. 1984 Jun;98(6):1926–1936. doi: 10.1083/jcb.98.6.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Covault J., Sanes J. R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4544–4548. doi: 10.1073/pnas.82.13.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crow M. T., Olson P. S., Stockdale F. E. Myosin light-chain expression during avian muscle development. J Cell Biol. 1983 Mar;96(3):736–744. doi: 10.1083/jcb.96.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crow M. T., Stockdale F. E. Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev Biol. 1986 Jan;113(1):238–254. doi: 10.1016/0012-1606(86)90126-0. [DOI] [PubMed] [Google Scholar]
  15. Damsky C. H., Knudsen K. A., Bradley D., Buck C. A., Horwitz A. F. Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture. J Cell Biol. 1985 May;100(5):1528–1539. doi: 10.1083/jcb.100.5.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ellisman M. H., Rash J. E., Staehelin L. A., Porter K. R. Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J Cell Biol. 1976 Mar;68(3):752–774. doi: 10.1083/jcb.68.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fallon J. R., Nitkin R. M., Reist N. E., Wallace B. G., McMahan U. J. Acetylcholine receptor-aggregating factor is similar to molecules concentrated at neuromuscular junctions. Nature. 1985 Jun 13;315(6020):571–574. doi: 10.1038/315571a0. [DOI] [PubMed] [Google Scholar]
  18. Fambrough D. M., Bayne E. K. Multiple forms of (Na+ + K+)-ATPase in the chicken. Selective detection of the major nerve, skeletal muscle, and kidney form by a monoclonal antibody. J Biol Chem. 1983 Mar 25;258(6):3926–3935. [PubMed] [Google Scholar]
  19. Fedde M. R. Electrical properties and acetylcholine sensitivity of singly and multiply innervated avian muscle fibers. J Gen Physiol. 1969 May;53(5):624–637. doi: 10.1085/jgp.53.5.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fiehn W., Peter J. B. Properties of the fragmented sarcoplasmic reticulum from fast twitch and slow twitch muscles. J Clin Invest. 1971 Mar;50(3):570–573. doi: 10.1172/JCI106526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fischbeck K. H., Bonilla E., Schotland D. L. Freeze-fracture analysis of plasma membrane cholesterol in fast- and slow-twitch muscles. J Ultrastruct Res. 1982 Oct;81(1):117–123. doi: 10.1016/s0022-5320(82)90045-4. [DOI] [PubMed] [Google Scholar]
  22. Friedlander M., Fischman D. A. Immunological studies of the embryonic muscle cell surface. Antiserum to the prefusion myoblast. J Cell Biol. 1979 Apr;81(1):193–214. doi: 10.1083/jcb.81.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gauthier G. F., Lowey S., Benfield P. A., Hobbs A. W. Distribution and properties of myosin isozymes in developing avian and mammalian skeletal muscle fibers. J Cell Biol. 1982 Feb;92(2):471–484. doi: 10.1083/jcb.92.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Geiger B., Tokuyasu K. T., Dutton A. H., Singer S. J. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4127–4131. doi: 10.1073/pnas.77.7.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Geiger B., Volk T., Volberg T. Molecular heterogeneity of adherens junctions. J Cell Biol. 1985 Oct;101(4):1523–1531. doi: 10.1083/jcb.101.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gottlieb D., Greve J. Monoclonal antibodies against developing chick brain and muscle. Curr Top Microbiol Immunol. 1978;81:40–44. doi: 10.1007/978-3-642-67448-8_6. [DOI] [PubMed] [Google Scholar]
  27. Granger B. L., Lazarides E. Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell. 1980 Dec;22(3):727–738. doi: 10.1016/0092-8674(80)90549-8. [DOI] [PubMed] [Google Scholar]
  28. Grove B. K., Schwartz G., Stockdale F. E. Quantitation of changes in cell surface determinants during skeletal muscle cell differentiation using monospecific antibody. J Supramol Struct Cell Biochem. 1981;17(2):147–152. doi: 10.1002/jsscb.380170205. [DOI] [PubMed] [Google Scholar]
  29. HESS A. Structural differences of fast and slow extrafusal muscle fibres and their nerve endings in chickens. J Physiol. 1961 Jul;157:221–231. doi: 10.1113/jphysiol.1961.sp006717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. KRUGER P., GUNTHER P. G. Innervation und pharmakologisches Verhalten des M. gastrocnemius und M. pectoralis maior der Vogel. Acta Anat (Basel) 1958;33(4):325–338. [PubMed] [Google Scholar]
  31. Kaufman S. J., Foster R. F., Haye K. R., Faiman L. E. Expression of a developmentally regulated antigen on the surface of skeletal and cardiac muscle cells. J Cell Biol. 1985 Jun;100(6):1977–1987. doi: 10.1083/jcb.100.6.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kaufman S. J., Foster R. F. Remodeling of the myoblast membrane accompanies development. Dev Biol. 1985 Jul;110(1):1–14. doi: 10.1016/0012-1606(85)90057-0. [DOI] [PubMed] [Google Scholar]
  33. Korenaga S. Electrical properties of muscle membrane and of neuromuscular junctions in normal and dystrophic chickens. Jpn J Physiol. 1980;30(3):313–331. doi: 10.2170/jjphysiol.30.313. [DOI] [PubMed] [Google Scholar]
  34. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  35. Lee H. U., Kaufman S. J. Use of monoclonal antibodies in the analysis of myoblast development. Dev Biol. 1981 Jan 15;81(1):81–95. doi: 10.1016/0012-1606(81)90350-x. [DOI] [PubMed] [Google Scholar]
  36. Lesley J. F., Lennon V. A. Transitory expression of Thy-1 antigen in skeletal muscle development. Nature. 1977 Jul 14;268(5616):163–165. doi: 10.1038/268163a0. [DOI] [PubMed] [Google Scholar]
  37. Mandrell R. E., Zollinger W. D. Use of a zwitterionic detergent for the restoration of the antibody-binding capacity of electroblotted meningococcal outer membrane proteins. J Immunol Methods. 1984 Feb 24;67(1):1–11. doi: 10.1016/0022-1759(84)90080-2. [DOI] [PubMed] [Google Scholar]
  38. Marchalonis J. J., Cone R. E., Santer V. Enzymic iodination. A probe for accessible surface proteins of normal and neoplastic lymphocytes. Biochem J. 1971 Oct;124(5):921–927. doi: 10.1042/bj1240921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Matsuda R., Obinata T., Shimada Y. Types of troponin components during development of chicken skeletal muscle. Dev Biol. 1981 Feb;82(1):11–19. doi: 10.1016/0012-1606(81)90424-3. [DOI] [PubMed] [Google Scholar]
  40. Menold M. M., Repasky E. A. Heterogeneity of spectrin distribution among avian muscle fiber types. Muscle Nerve. 1984 Jun;7(5):408–414. doi: 10.1002/mus.880070511. [DOI] [PubMed] [Google Scholar]
  41. Miller J. B., Crow M. T., Stockdale F. E. Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures. J Cell Biol. 1985 Nov;101(5 Pt 1):1643–1650. doi: 10.1083/jcb.101.5.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Miller J. B., Stockdale F. E. Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3860–3864. doi: 10.1073/pnas.83.11.3860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nelson W. J., Lazarides E. Expression of the beta subunit of spectrin in nonerythroid cells. Proc Natl Acad Sci U S A. 1983 Jan;80(2):363–367. doi: 10.1073/pnas.80.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. O'Neill M. C., Stockdale F. E. Differentiation without cell division in cultured skeletal muscle. Dev Biol. 1972 Dec;29(4):410–418. doi: 10.1016/0012-1606(72)90081-4. [DOI] [PubMed] [Google Scholar]
  45. Obinata T., Reinach F. C., Bader D. M., Masaki T., Kitani S., Fischman D. A. Immunochemical analysis of C-protein isoform transitions during the development of chicken skeletal muscle. Dev Biol. 1984 Jan;101(1):116–124. doi: 10.1016/0012-1606(84)90122-2. [DOI] [PubMed] [Google Scholar]
  46. Page S. G. Structure and some contractile properties of fast and slow muscles of the chicken. J Physiol. 1969 Nov;205(1):131–145. doi: 10.1113/jphysiol.1969.sp008956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pardo J. V., Siliciano J. D., Craig S. W. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements ("costameres") mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1008–1012. doi: 10.1073/pnas.80.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pardo J. V., Siliciano J. D., Craig S. W. Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol. 1983 Oct;97(4):1081–1088. doi: 10.1083/jcb.97.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  50. Robinson T. F., Cohen-Gould L., Factor S. M. Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab Invest. 1983 Oct;49(4):482–498. [PubMed] [Google Scholar]
  51. Rubinstein N. A., Holtzer H. Fast and slow muscles in tissue culture synthesise only fast myosin. Nature. 1979 Jul 26;280(5720):323–325. doi: 10.1038/280323a0. [DOI] [PubMed] [Google Scholar]
  52. Ryan D. M., Shafiq S. A. A freeze-fracture study of the anterior and posterior latissimus dorsi muscle of the chicken. Anat Rec. 1980 Oct;198(2):147–161. doi: 10.1002/ar.1091980203. [DOI] [PubMed] [Google Scholar]
  53. Sanes J. R., Hall Z. W. Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina. J Cell Biol. 1979 Nov;83(2 Pt 1):357–370. doi: 10.1083/jcb.83.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Seiler S., Fleischer S. Isolation of plasma membrane vesicles from rabbit skeletal muscle and their use in ion transport studies. J Biol Chem. 1982 Nov 25;257(22):13862–13871. [PubMed] [Google Scholar]
  55. Shear C. R., Bloch R. J. Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J Cell Biol. 1985 Jul;101(1):240–256. doi: 10.1083/jcb.101.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Small J. V., Fürst D. O., De Mey J. Localization of filamin in smooth muscle. J Cell Biol. 1986 Jan;102(1):210–220. doi: 10.1083/jcb.102.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Smith P. B., Appel S. H. Isolation and characterization of the surface membranes of fast and slow mammalian skeletal muscle. Biochim Biophys Acta. 1977 Apr 1;466(1):109–122. doi: 10.1016/0005-2736(77)90212-7. [DOI] [PubMed] [Google Scholar]
  58. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ueno T., Korn E. D. Isolation and partial characterization of a 110-kD dimer actin-binding protein. J Cell Biol. 1986 Aug;103(2):621–630. doi: 10.1083/jcb.103.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wakshull E., Bayne E. K., Chiquet M., Fambrough D. M. Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia. Dev Biol. 1983 Dec;100(2):464–477. doi: 10.1016/0012-1606(83)90239-7. [DOI] [PubMed] [Google Scholar]
  61. Walsh F. S., Ritter M. A. Surface antigen differentiation during human myogenesis in culture. Nature. 1981 Jan 1;289(5793):60–64. doi: 10.1038/289060a0. [DOI] [PubMed] [Google Scholar]
  62. Yamashiro-Matsumura S., Matsumura F. Intracellular localization of the 55-kD actin-bundling protein in cultured cells: spatial relationships with actin, alpha-actinin, tropomyosin, and fimbrin. J Cell Biol. 1986 Aug;103(2):631–640. doi: 10.1083/jcb.103.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES