Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 May 1;104(5):1217–1222. doi: 10.1083/jcb.104.5.1217

Tubular lysosomes accompany stimulated pinocytosis in macrophages

PMCID: PMC2114457  PMID: 3571329

Abstract

A network of tubular lysosomes extends through the cytoplasm of J774.2 macrophages and phorbol ester-treated mouse peritoneal macrophages. The presence of this network is dependent upon the integrity of cytoplasmic microtubules and correlates with high cellular rates of accumulation of Lucifer Yellow (LY), a marker of fluid phase pinocytosis. We tested the hypothesis that the efficiency of LY transfer between the pinosomal and lysosomal compartments is increased in the presence of tubular lysosomes by asking how conditions that deplete the tubular lysosome network affect pinocytic accumulation of LY. Tubular lysosomes were disassembled in cells treated with microtubule-depolymerizing drugs or in cells that had phagocytosed latex beads. In unstimulated peritoneal macrophages, which normally contain few tubular lysosomes and which exhibit relatively inefficient transfer of pinocytosed LY to lysosomes, such treatments had little effect on pinocytosis. However, in J774 macrophages and phorbol ester-stimulated peritoneal macrophages, these treatments markedly reduced the efficiency of pinocytic accumulation of LY. We conclude that a basal level of solute accumulation via pinocytosis proceeds independently of the tubular lysosomes, and that an extended tubular lysosomal network contributes to the elevated rates of solute accumulation that accompany macrophage stimulation. Moreover, we suggest that the transformed mouse macrophage cell line J774 exhibits this stimulated pinocytosis constitutively.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besterman J. M., Airhart J. A., Low R. B., Rannels D. E. Pinocytosis and intracellular degradation of exogenous protein: modulation by amino acids. J Cell Biol. 1983 Jun;96(6):1586–1591. doi: 10.1083/jcb.96.6.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Freed J. J., Lebowitz M. M. The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May;45(2):334–354. doi: 10.1083/jcb.45.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibbs E. M., Lienhard G. E., Appleman J. R., Lane M. D., Frost S. C. Insulin stimulates fluid-phase endocytosis and exocytosis in 3T3-L1 adipocytes. J Biol Chem. 1986 Mar 25;261(9):3944–3951. [PubMed] [Google Scholar]
  5. Herman B., Albertini D. F. A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation. J Cell Biol. 1984 Feb;98(2):565–576. doi: 10.1083/jcb.98.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Melmed R. N., Karanian P. J., Berlin R. D. Control of cell volume in the J774 macrophage by microtubule disassembly and cyclic AMP. J Cell Biol. 1981 Sep;90(3):761–768. doi: 10.1083/jcb.90.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mizel S. B., Wilson L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry. 1972 Jul 4;11(14):2573–2578. doi: 10.1021/bi00764a003. [DOI] [PubMed] [Google Scholar]
  9. Muller W. A., Steinman R. M., Cohn Z. A. The membrane proteins of the vacuolar system. II. Bidirectional flow between secondary lysosomes and plasma membrane. J Cell Biol. 1980 Jul;86(1):304–314. doi: 10.1083/jcb.86.1.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pesanti E. L., Axline S. G. Colchicine effects on lysosomal enzyme induction and intracellular degradation in the cultivated macrophage. J Exp Med. 1975 May 1;141(5):1030–1046. doi: 10.1084/jem.141.5.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Phaire-Washington L., Silverstein S. C., Wang E. Phorbol myristate acetate stimulates microtubule and 10-nm filament extension and lysosome redistribution in mouse macrophages. J Cell Biol. 1980 Aug;86(2):641–655. doi: 10.1083/jcb.86.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Phaire-Washington L., Wang E., Silverstein S. C. Phorbol myristate acetate stimulates pinocytosis and membrane spreading in mouse peritoneal macrophages. J Cell Biol. 1980 Aug;86(2):634–640. doi: 10.1083/jcb.86.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ralph P., Prichard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol. 1975 Feb;114(2 Pt 2):898–905. [PubMed] [Google Scholar]
  14. Schroer T. A., Kelly R. B. In vitro translocation of organelles along microtubules. Cell. 1985 Apr;40(4):729–730. doi: 10.1016/0092-8674(85)90329-0. [DOI] [PubMed] [Google Scholar]
  15. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Swanson J. A., Yirinec B. D., Silverstein S. C. Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages. J Cell Biol. 1985 Mar;100(3):851–859. doi: 10.1083/jcb.100.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Swanson J., Yirinec B., Burke E., Bushnell A., Silverstein S. C. Effect of alterations in the size of the vacuolar compartment on pinocytosis in J774.2 macrophages. J Cell Physiol. 1986 Aug;128(2):195–201. doi: 10.1002/jcp.1041280209. [DOI] [PubMed] [Google Scholar]
  18. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Van Deurs B., Nilausen K. Pinocytosis in mouse L-fibroblasts: ultrastructural evidence for a direct membrane shuttle between the plasma membrane and the lysosomal compartment. J Cell Biol. 1982 Aug;94(2):279–286. doi: 10.1083/jcb.94.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilson L., Friedkin M. The biochemical events of mitosis. I. Synthesis and properties of colchicine labeled with tritium in its acetyl moiety. Biochemistry. 1966 Jul;5(7):2463–2468. doi: 10.1021/bi00871a042. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES