Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 May 1;104(5):1199–1205. doi: 10.1083/jcb.104.5.1199

The posttranslational processing of sucrase-isomaltase in HT-29 cells is a function of their state of enterocytic differentiation

PMCID: PMC2114471  PMID: 3553207

Abstract

The biosynthesis of sucrase-isomaltase was compared in enterocyte-like differentiated (i.e., grown in the absence of glucose) and undifferentiated (i.e., grown in the presence of glucose) HT-29 cells. Unlike differentiated cells, in which the enzyme is easily detectable and active, undifferentiated cells display almost no enzyme activity and the protein cannot be detected by means of cell surface immunofluorescence or immunodetection in membrane-enriched fractions or cell homogenates. Pulse experiments with L-[35S]-methionine show that the enzyme is, however, synthesized in these undifferentiated cells. As compared with the corresponding molecular forms in differentiated cells, the high-mannose form of the enzyme in undifferentiated cells is similarly synthesized and has the same apparent Mr. However, its complex form is less labeled and has a lower apparent Mr. Pulse-chase experiments with L-[35S]methionine show that, although the enzyme is synthesized to the same extent in both situations, the high-mannose and complex forms are rapidly degraded in undifferentiated cells, with an apparent half-life of 6 h, in contrast to differentiated cells in which the enzyme is stable for at least 48 h. A comparison of the processing of the enzyme in both situations shows that the conversion of the high- mannose to the complex form is markedly decreased in undifferentiated cells. These results indicate that the absence of sucrase-isomaltase expression in undifferentiated cells is not the consequence of an absence of biosynthesis but rather the result of both an impaired glycosylation and a rapid degradation of the enzyme.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bienkowski R. S. Intracellular degradation of newly synthesized secretory proteins. Biochem J. 1983 Jul 15;214(1):1–10. doi: 10.1042/bj2140001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blok J., Ginsel L. A., Mulder-Stapel A. A., Onderwater J. J., Daems W. T. The effect of colchicine on the intracellular transport of 3H-fucose-labelled glycoproteins in the absorptive cells of cultured human small-intestinal tissue. An autoradiographical and biochemical study. Cell Tissue Res. 1981;215(1):1–12. doi: 10.1007/BF00236244. [DOI] [PubMed] [Google Scholar]
  3. Blok J., Mulder-Stapel A. A., Ginsel L. A., Daems W. T. The effect of chloroquine on lysosomal function and cell-coat glycoprotein transport in the absorptive cells of cultured human small-intestinal tissue. Cell Tissue Res. 1981;218(2):227–251. doi: 10.1007/BF00210340. [DOI] [PubMed] [Google Scholar]
  4. Bretscher A., Weber K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci U S A. 1979 May;76(5):2321–2325. doi: 10.1073/pnas.76.5.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  6. Danielsen E. M., Cowell G. M. Biosynthesis of intestinal microvillar proteins. Further characterization of the intracellular processing and transport. FEBS Lett. 1984 Jan 23;166(1):28–32. doi: 10.1016/0014-5793(84)80038-1. [DOI] [PubMed] [Google Scholar]
  7. Danielsen E. M., Cowell G. M., Norén O., Sjöström H. Biosynthesis of microvillar proteins. Biochem J. 1984 Jul 1;221(1):1–14. doi: 10.1042/bj2210001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Datema R., Schwarz R. T. Effect of energy depletion on the glycosylation of a viral glycoprotein. J Biol Chem. 1981 Nov 10;256(21):11191–11198. [PubMed] [Google Scholar]
  9. Denis C., Cortinovis C., Terrain B., Viallard V., Paris H., Murat J. C. Activity of enzymes related to carbohydrate metabolism in the HT 29 colon adenocarcinoma cell line and tumor. Int J Biochem. 1984;16(1):87–91. doi: 10.1016/0020-711x(84)90055-7. [DOI] [PubMed] [Google Scholar]
  10. Gershman H., Robbins P. W. Transitory effects of glucose starvation on the synthesis of dolichol-linked oligosaccharides in mammalian cells. J Biol Chem. 1981 Aug 10;256(15):7774–7780. [PubMed] [Google Scholar]
  11. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  12. Grinna L. S., Robbins P. W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J Biol Chem. 1980 Mar 25;255(6):2255–2258. [PubMed] [Google Scholar]
  13. Hauri H. P., Roth J., Sterchi E. E., Lentze M. J. Transport to cell surface of intestinal sucrase-isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase-isomaltase deficiency. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4423–4427. doi: 10.1073/pnas.82.13.4423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hauri H. P., Sterchi E. E., Bienz D., Fransen J. A., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–364. doi: 10.1146/annurev.bi.51.070182.002003. [DOI] [PubMed] [Google Scholar]
  16. Hunziker W., Spiess M., Semenza G., Lodish H. F. The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell. 1986 Jul 18;46(2):227–234. doi: 10.1016/0092-8674(86)90739-7. [DOI] [PubMed] [Google Scholar]
  17. Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
  18. Lacroix B., Kedinger M., Simon-Assmann P., Rousset M., Zweibaum A., Haffen K. Developmental pattern of brush border enzymes in the human fetal colon. Correlation with some morphogenetic events. Early Hum Dev. 1984 Feb;9(2):95–103. doi: 10.1016/0378-3782(84)90089-6. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Liu T., Stetson B., Turco S. J., Hubbard S. C., Robbins P. W. Arrangement of glucose residues in the lipid-linked oligosaccharide precursor of asparaginyl oligosaccharides. J Biol Chem. 1979 Jun 10;254(11):4554–4559. [PubMed] [Google Scholar]
  21. Maroux S., Louvard D., Baratti J. The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta. 1973 Sep 15;321(1):282–295. doi: 10.1016/0005-2744(73)90083-1. [DOI] [PubMed] [Google Scholar]
  22. Messer M., Dahlqvist A. A one-step ultramicro method for the assay of intestinal disaccharidases. Anal Biochem. 1966 Mar;14(3):376–392. doi: 10.1016/0003-2697(66)90280-6. [DOI] [PubMed] [Google Scholar]
  23. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  24. Nagatsu T., Hino M., Fuyamada H., Hayakawa T., Sakakibara S. New chromogenic substrates for X-prolyl dipeptidyl-aminopeptidase. Anal Biochem. 1976 Aug;74(2):466–476. doi: 10.1016/0003-2697(76)90227-x. [DOI] [PubMed] [Google Scholar]
  25. Paris H., Rousset M., Terrain B., Chevalier G., Zweibaum A., Murat J. C. Variations of glycogen level and alpha-glucosidase activity in human malignant epithelial cell lines in culture. Int J Biochem. 1982;14(2):141–145. doi: 10.1016/0020-711x(82)90153-7. [DOI] [PubMed] [Google Scholar]
  26. Paris H., Terrain B., Viallard V., Rousset M., Zweibaum A., Murat J. C. Activity of glycogen metabolizing enzymes in glucose deprived HT 29 adenocarcinoma cell-line. Biochem Biophys Res Commun. 1983 Jan 27;110(2):371–377. doi: 10.1016/0006-291x(83)91158-0. [DOI] [PubMed] [Google Scholar]
  27. Pringault E., Arpin M., Garcia A., Finidori J., Louvard D. A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J. 1986 Dec 1;5(12):3119–3124. doi: 10.1002/j.1460-2075.1986.tb04618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robine S., Huet C., Moll R., Sahuquillo-Merino C., Coudrier E., Zweibaum A., Louvard D. Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proc Natl Acad Sci U S A. 1985 Dec;82(24):8488–8492. doi: 10.1073/pnas.82.24.8488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rousset M., Paris H., Chevalier G., Terrain B., Murat J. C., Zweibaum A. Growth-related enzymatic control of glycogen metabolism in cultured human tumor cells. Cancer Res. 1984 Jan;44(1):154–160. [PubMed] [Google Scholar]
  30. Rousset M., Trugnan G., Brun J. L., Zweibaum A. Inhibition of the post-translational processing of microvillar hydrolases is associated with a specific decreased expression of sucrase-isomaltase and an increased turnover of glucose in Caco-2 cells treated with monensin. FEBS Lett. 1986 Nov 10;208(1):34–38. doi: 10.1016/0014-5793(86)81526-5. [DOI] [PubMed] [Google Scholar]
  31. Saunier B., Kilker R. D., Jr, Tkacz J. S., Quaroni A., Herscovics A. Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J Biol Chem. 1982 Dec 10;257(23):14155–14161. [PubMed] [Google Scholar]
  32. Schmitz J., Preiser H., Maestracci D., Ghosh B. K., Cerda J. J., Crane R. K. Purification of the human intestinal brush border membrane. Biochim Biophys Acta. 1973 Sep 27;323(1):98–112. doi: 10.1016/0005-2736(73)90434-3. [DOI] [PubMed] [Google Scholar]
  33. Schworer C. M., Cox J. R., Mortimore G. E. Alteration of lysosomal density by sequestered glycogen during deprivation-induced autophagy in rat liver. Biochem Biophys Res Commun. 1979 Mar 15;87(1):163–170. doi: 10.1016/0006-291x(79)91661-9. [DOI] [PubMed] [Google Scholar]
  34. Semenza G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol. 1986;2:255–313. doi: 10.1146/annurev.cb.02.110186.001351. [DOI] [PubMed] [Google Scholar]
  35. Triadou N. Antigenic cross-reactions among human intestinal brush-border enzymes revealed by the immunoblotting method and rabbit anti-enzyme sera. J Immunol Methods. 1984 Oct 26;73(2):283–291. doi: 10.1016/0022-1759(84)90403-4. [DOI] [PubMed] [Google Scholar]
  36. Triadou N., Zweibaum A. Maturation of sucrase-isomaltase complex in human fetal small and large intestine during gestation. Pediatr Res. 1985 Jan;19(1):136–138. doi: 10.1203/00006450-198501000-00035. [DOI] [PubMed] [Google Scholar]
  37. Trugnan G., Rousset M., Zweibaum A. Castanospermine: a potent inhibitor of sucrase from the human enterocyte-like cell line Caco-2. FEBS Lett. 1986 Jan 20;195(1-2):28–32. doi: 10.1016/0014-5793(86)80123-5. [DOI] [PubMed] [Google Scholar]
  38. Wice B. M., Trugnan G., Pinto M., Rousset M., Chevalier G., Dussaulx E., Lacroix B., Zweibaum A. The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J Biol Chem. 1985 Jan 10;260(1):139–146. [PubMed] [Google Scholar]
  39. Zweibaum A., Hauri H. P., Sterchi E., Chantret I., Haffen K., Bamat J., Sordat B. Immunohistological evidence, obtained with monoclonal antibodies, of small intestinal brush border hydrolases in human colon cancers and foetal colons. Int J Cancer. 1984 Nov 15;34(5):591–598. doi: 10.1002/ijc.2910340502. [DOI] [PubMed] [Google Scholar]
  40. Zweibaum A., Pinto M., Chevalier G., Dussaulx E., Triadou N., Lacroix B., Haffen K., Brun J. L., Rousset M. Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J Cell Physiol. 1985 Jan;122(1):21–29. doi: 10.1002/jcp.1041220105. [DOI] [PubMed] [Google Scholar]
  41. Zweibaum A., Triadou N., Kedinger M., Augeron C., Robine-Léon S., Pinto M., Rousset M., Haffen K. Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int J Cancer. 1983 Oct 15;32(4):407–412. doi: 10.1002/ijc.2910320403. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES