Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 May 1;104(5):1435–1441. doi: 10.1083/jcb.104.5.1435

The calcification of cartilage matrix in chondrocyte culture: studies of the C-propeptide of type II collagen (chondrocalcin)

PMCID: PMC2114478  PMID: 3494735

Abstract

We have shown that when chondrocytes are isolated by collagenase digestion of hyaline cartilage from growth plate, nasal, and epiphyseal cartilages of bovine fetuses they rapidly elaborate an extracellular matrix in culture. Only growth plate chondrocytes can calcify this matrix as ascertained by incorporation of 45Ca2+, detection of mineral with von Kossa's stain and electron microscopy. There is an extremely close direct correlation between 45Ca2+ incorporation in the first 24 h of culture and the content of the C-propeptide of type II collagen, measured by radioimmunoassay, at the time of isolation and during culture. Moreover, growth plate cells have an increased intracellular content of the C-propeptide per deoxyribonucleic acid and, during culture, per hydroxyproline (as a measure of helical collagen) compared with nasal and epiphyseal chondrocytes. In growth plate chondrocytes 24,25-dihydroxycholecalciferol (24,25-[OH]2D3), but not 1,25- dihydroxycholecalciferol alone, stimulates the net synthesis of the C- propeptide and calcification; proteoglycan net synthesis is unaffected. Together, these metabolites of vitamin D further stimulate C-propeptide net synthesis but do not further increase calcification stimulated by 24,25-(OH)2D3. These observations further demonstrate the close correlation between the C-propeptide of type II collagen and the calcification of cartilage matrix.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkin I., Pita J. C., Ornoy A., Agundez A., Castiglione G., Howell D. S. Effects of vitamin D metabolites on healing of low phosphate, vitamin D-deficient induced rickets in rats. Bone. 1985;6(2):113–123. doi: 10.1016/8756-3282(85)90315-1. [DOI] [PubMed] [Google Scholar]
  2. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  3. Blumenkrantz N., Asboe-Hansen G. A quick and specific assay for hydroxyproline. Anal Biochem. 1973 Sep;55(1):288–291. doi: 10.1016/0003-2697(73)90316-3. [DOI] [PubMed] [Google Scholar]
  4. Choi H. U., Tang L. H., Johnson T. L., Pal S., Rosenberg L. C., Reiner A., Poole A. R. Isolation and characterization of a 35,000 molecular weight subunit fetal cartilage matrix protein. J Biol Chem. 1983 Jan 10;258(1):655–661. [PubMed] [Google Scholar]
  5. Corvol M., Ulmann A., Garabedian M. Specific nuclear uptake of 24,25-dihydroxycholecalciferol, a vitamin D3 metabolite biologically active in cartilage. FEBS Lett. 1980 Jul 28;116(2):273–276. doi: 10.1016/0014-5793(80)80661-2. [DOI] [PubMed] [Google Scholar]
  6. Davidson J. M., McEneany L. S., Bornstein P. Procollagen processing. Limited proteolysis of COOH-terminal extension peptides by a cathepsin-like protease secreted by tendon fibroblasts. Eur J Biochem. 1979 Oct 15;100(2):551–558. doi: 10.1111/j.1432-1033.1979.tb04201.x. [DOI] [PubMed] [Google Scholar]
  7. Fine N., Binderman I., Somjen D., Earon Y., Edelstein S., Weisman Y. Autoradiographic localization of 24R,25-dihydroxyvitamin D3 in epiphyseal cartilage. Bone. 1985;6(2):99–104. doi: 10.1016/8756-3282(85)90313-8. [DOI] [PubMed] [Google Scholar]
  8. Hojima Y., van der Rest M., Prockop D. J. Type I procollagen carboxyl-terminal proteinase from chick embryo tendons. Purification and characterization. J Biol Chem. 1985 Dec 15;260(29):15996–16003. [PubMed] [Google Scholar]
  9. Kream B. E., Jose M., Yamada S., DeLuca H. F. A specific high-affinity binding macromolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Science. 1977 Sep 9;197(4308):1086–1088. doi: 10.1126/science.887939. [DOI] [PubMed] [Google Scholar]
  10. Leung M. K., Fessler L. I., Greenberg D. B., Fessler J. H. Separate amino and carboxyl procollagen peptidases in chick embryo tendon. J Biol Chem. 1979 Jan 10;254(1):224–232. [PubMed] [Google Scholar]
  11. Manolagas S. C., Taylor C. M., Anderson D. C. Highly specific binding of 1,25-dihydroxycholecalciferol in bone cytosol. J Endocrinol. 1979 Jan;80(1):35–39. doi: 10.1677/joe.0.0800035. [DOI] [PubMed] [Google Scholar]
  12. Miller E. J., Lunde L. G. Isolation and characterization of the cyanogen bromide peptides from the alpha 1(II) chain of bovine and human cartilage collagen. Biochemistry. 1973 Aug 14;12(17):3153–3159. doi: 10.1021/bi00741a003. [DOI] [PubMed] [Google Scholar]
  13. Narbaitz R., Stumpf W. E., Sar M., Huang S., DeLuca H. F. Autoradiographic localization of target cells for 1 alpha, 25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–182. doi: 10.1007/BF02405028. [DOI] [PubMed] [Google Scholar]
  14. Ornoy A., Goodwin D., Noff D., Edelstein S. 24, 25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978 Nov 30;276(5687):517–519. doi: 10.1038/276517a0. [DOI] [PubMed] [Google Scholar]
  15. Pal S., Tang L. H., Choi H., Habermann E., Rosenberg L., Roughley P., Poole A. R. Structural changes during development in bovine fetal epiphyseal cartilage. Coll Relat Res. 1981 Feb;1(2):151–176. doi: 10.1016/s0174-173x(81)80017-9. [DOI] [PubMed] [Google Scholar]
  16. Plachot J. J., Du Bois M. B., Halpern S., Cournot-Witmer G., Garabedian M., Balsan S. In vitro action of 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol on matrix organization and mineral distribution in rabbit growth plate. Metab Bone Dis Relat Res. 1982;4(2):135–142. doi: 10.1016/0221-8747(82)90027-3. [DOI] [PubMed] [Google Scholar]
  17. Poole A. R., Pidoux I., Reiner A., Choi H., Rosenberg L. C. Association of an extracellular protein (chondrocalcin) with the calcification of cartilage in endochondral bone formation. J Cell Biol. 1984 Jan;98(1):54–65. doi: 10.1083/jcb.98.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenbloom J., Endo R., Harsch M. Termination of procollagen chain synthesis by puromycin. Evidence that assembly and secretion require a COOH-terminal extension. J Biol Chem. 1976 Apr 10;251(7):2070–2076. [PubMed] [Google Scholar]
  19. Roughley P. J., Poole A. R., Mort J. S. The heterogeneity of link proteins isolated from human articular cartilage proteoglycan aggregates. J Biol Chem. 1982 Oct 25;257(20):11908–11914. [PubMed] [Google Scholar]
  20. Schofield J. D., Uitto J., Prockop D. J. Formation of interchain disulfide bonds and helical structure during biosynthesis of procollagen by embryonic tendon cells. Biochemistry. 1974 Apr 23;13(9):1801–1806. doi: 10.1021/bi00706a004. [DOI] [PubMed] [Google Scholar]
  21. Skjødt H., Gallagher J. A., Beresford J. N., Couch M., Poser J. W., Russell R. G. Vitamin D metabolites regulate osteocalcin synthesis and proliferation of human bone cells in vitro. J Endocrinol. 1985 Jun;105(3):391–396. doi: 10.1677/joe.0.1050391. [DOI] [PubMed] [Google Scholar]
  22. Van der Rest M., Rosenberg L. C., Olsen B. R., Poole A. R. Chondrocalcin is identical with the C-propeptide of type II procollagen. Biochem J. 1986 Aug 1;237(3):923–925. doi: 10.1042/bj2370923. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES