Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 May 1;104(5):1299–1308. doi: 10.1083/jcb.104.5.1299

Redistribution of microtubules and pericentriolar material during the development of polarity in mouse blastomeres

PMCID: PMC2114484  PMID: 3571331

Abstract

The distribution of microtubules and microtubule organizing centers (MTOCs) during the development of cell polarity in eight-cell mouse blastomeres was studied by immunofluorescence and immunoelectron microscopy using monoclonal anti-tubulin antibodies and an anti- pericentriolar material (PCM) serum. In early eight-cell blastomeres microtubules were found mainly around the nucleus and in the cell cortex, whereas PCM foci were observed dispersed in the cytoplasm. During the eight-cell stage, microtubules disappeared from the area adjacent to the zone of intercellular contact and accumulated in the apical part of the cell while their number decreased in the basal domain. The PCM also relocalized to the apical domain of the cell, but this occurred after the redistribution of the microtubules by a mechanism that involved the microtubule network. The possible roles of both MTOCs and microtubules in establishing cell polarity are discussed.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calarco-Gillam P. D., Siebert M. C., Hubble R., Mitchison T., Kirschner M. Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell. 1983 Dec;35(3 Pt 2):621–629. doi: 10.1016/0092-8674(83)90094-6. [DOI] [PubMed] [Google Scholar]
  2. Clayton L., Black C. M., Lloyd C. W. Microtubule nucleating sites in higher plant cells identified by an auto-antibody against pericentriolar material. J Cell Biol. 1985 Jul;101(1):319–324. doi: 10.1083/jcb.101.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Brabander M. Microtubules, central elements of cellular organization. Endeavour. 1982;6(3):124–134. doi: 10.1016/0160-9327(82)90045-x. [DOI] [PubMed] [Google Scholar]
  4. Ducibella T., Anderson E. Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol. 1975 Nov;47(1):45–58. doi: 10.1016/0012-1606(75)90262-6. [DOI] [PubMed] [Google Scholar]
  5. Ducibella T. Depolymerization of microtubules prior to compaction. Development of cell polarity and cell spreading are not inhibited. Exp Cell Res. 1982 Mar;138(1):31–38. doi: 10.1016/0014-4827(82)90087-8. [DOI] [PubMed] [Google Scholar]
  6. Ducibella T., Ukena T., Karnovsky M., Anderson E. Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol. 1977 Jul;74(1):153–167. doi: 10.1083/jcb.74.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dylewski D. P., Keenan T. W. Centrioles in the mammary epithelium of the rat. J Cell Sci. 1984 Dec;72:185–193. doi: 10.1242/jcs.72.1.185. [DOI] [PubMed] [Google Scholar]
  8. Euteneuer U., Schliwa M. Evidence for an involvement of actin in the positioning and motility of centrosomes. J Cell Biol. 1985 Jul;101(1):96–103. doi: 10.1083/jcb.101.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleming T. P., Cannon P. M., Pickering S. J. The cytoskeleton, endocytosis and cell polarity in the mouse preimplantation embryo. Dev Biol. 1986 Feb;113(2):406–419. doi: 10.1016/0012-1606(86)90175-2. [DOI] [PubMed] [Google Scholar]
  10. Fleming T. P., Pickering S. J. Maturation and polarization of the endocytotic system in outside blastomeres during mouse preimplantation development. J Embryol Exp Morphol. 1985 Oct;89:175–208. [PubMed] [Google Scholar]
  11. Fulton B. P., Whittingham D. G. Activation of mammalian oocytes by intracellular injection of calcium. Nature. 1978 May 11;273(5658):149–151. doi: 10.1038/273149a0. [DOI] [PubMed] [Google Scholar]
  12. Goodall H., Johnson M. H. The nature of intercellular coupling within the preimplantation mouse embryo. J Embryol Exp Morphol. 1984 Feb;79:53–76. [PubMed] [Google Scholar]
  13. Goodall H., Maro B. Major loss of junctional coupling during mitosis in early mouse embryos. J Cell Biol. 1986 Feb;102(2):568–575. doi: 10.1083/jcb.102.2.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gorbsky G., Borisy G. G. Microtubule distribution in cultured cells and intact tissues: improved immunolabeling resolution through the use of reversible embedment cytochemistry. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6889–6893. doi: 10.1073/pnas.82.20.6889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gotlieb A. I., May L. M., Subrahmanyan L., Kalnins V. I. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol. 1981 Nov;91(2 Pt 1):589–594. doi: 10.1083/jcb.91.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gotlieb A. I., Subrahmanyan L., Kalnins V. I. Microtubule-organizing centers and cell migration: effect of inhibition of migration and microtubule disruption in endothelial cells. J Cell Biol. 1983 May;96(5):1266–1272. doi: 10.1083/jcb.96.5.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Handyside A. H. Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. J Embryol Exp Morphol. 1980 Dec;60:99–116. [PubMed] [Google Scholar]
  18. Heggeness M. H., Simon M., Singer S. J. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3863–3866. doi: 10.1073/pnas.75.8.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Imhof B. A., Marti U., Boller K., Frank H., Birchmeier W. Association between coated vesicles and microtubules. Exp Cell Res. 1983 Apr 15;145(1):199–207. doi: 10.1016/s0014-4827(83)80021-4. [DOI] [PubMed] [Google Scholar]
  20. Johnson M. H., Maro B. A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: the role of cytoskeletal elements. J Embryol Exp Morphol. 1985 Dec;90:311–334. [PubMed] [Google Scholar]
  21. Johnson M. H., Maro B. The distribution of cytoplasmic actin in mouse 8-cell blastomeres. J Embryol Exp Morphol. 1984 Aug;82:97–117. [PubMed] [Google Scholar]
  22. Johnson M. H., Ziomek C. A. The foundation of two distinct cell lineages within the mouse morula. Cell. 1981 Apr;24(1):71–80. doi: 10.1016/0092-8674(81)90502-x. [DOI] [PubMed] [Google Scholar]
  23. Karsenti E., Kobayashi S., Mitchison T., Kirschner M. Role of the centrosome in organizing the interphase microtubule array: properties of cytoplasts containing or lacking centrosomes. J Cell Biol. 1984 May;98(5):1763–1776. doi: 10.1083/jcb.98.5.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986 May 9;45(3):329–342. doi: 10.1016/0092-8674(86)90318-1. [DOI] [PubMed] [Google Scholar]
  26. Kupfer A., Dennert G., Singer S. J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7224–7228. doi: 10.1073/pnas.80.23.7224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kupfer A., Louvard D., Singer S. J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2603–2607. doi: 10.1073/pnas.79.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lehtonen E., Badley R. A. Localization of cytoskeletal proteins in preimplantation mouse embryos. J Embryol Exp Morphol. 1980 Feb;55:211–225. [PubMed] [Google Scholar]
  29. Lehtonen E. Changes in cell dimensions and intercellular contacts during cleavage-stage cell cycles in mouse embryonic cells. J Embryol Exp Morphol. 1980 Aug;58:231–249. [PubMed] [Google Scholar]
  30. Lo C. W., Gilula N. B. Gap junctional communication in the post-implantation mouse embryo. Cell. 1979 Oct;18(2):411–422. doi: 10.1016/0092-8674(79)90060-6. [DOI] [PubMed] [Google Scholar]
  31. Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maro B., Howlett S. K., Webb M. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol. 1985 Nov;101(5 Pt 1):1665–1672. doi: 10.1083/jcb.101.5.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maro B., Johnson M. H., Pickering S. J., Flach G. Changes in actin distribution during fertilization of the mouse egg. J Embryol Exp Morphol. 1984 Jun;81:211–237. [PubMed] [Google Scholar]
  34. Maro B., Johnson M. H., Pickering S. J., Louvard D. Changes in the distribution of membranous organelles during mouse early development. J Embryol Exp Morphol. 1985 Dec;90:287–309. [PubMed] [Google Scholar]
  35. Maro B., Pickering S. J. Microtubules influence compaction in preimplantation mouse embryos. J Embryol Exp Morphol. 1984 Dec;84:217–232. [PubMed] [Google Scholar]
  36. Nicolson G. L., Yanagimachi R., Yanagimachi H. Ultrastructural localization of lectin-binding sites on the zonae pellucidae and plasma membranes of mammalian eggs. J Cell Biol. 1975 Aug;66(2):263–274. doi: 10.1083/jcb.66.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pfeffer S. R., Drubin D. G., Kelly R. B. Identification of three coated vesicle components as alpha- and beta-tubulin linked to a phosphorylated 50,000-dalton polypeptide. J Cell Biol. 1983 Jul;97(1):40–47. doi: 10.1083/jcb.97.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pratt H. P., Ziomek C. A., Reeve W. J., Johnson M. H. Compaction of the mouse embryo: an analysis of its components. J Embryol Exp Morphol. 1982 Aug;70:113–132. [PubMed] [Google Scholar]
  39. Reeve W. J. The distribution of ingested horseradish peroxidase in the 16-cell mouse embryo. J Embryol Exp Morphol. 1981 Dec;66:191–207. [PubMed] [Google Scholar]
  40. Reeve W. J., Ziomek C. A. Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction. J Embryol Exp Morphol. 1981 Apr;62:339–350. [PubMed] [Google Scholar]
  41. Salas P. J., Misek D. E., Vega-Salas D. E., Gundersen D., Cereijido M., Rodriguez-Boulan E. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity. J Cell Biol. 1986 May;102(5):1853–1867. doi: 10.1083/jcb.102.5.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schliwa M., Euteneuer U., Bulinski J. C., Izant J. G. Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1037–1041. doi: 10.1073/pnas.78.2.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schliwa M., Pryzwansky K. B., Euteneuer U. Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility. Cell. 1982 Dec;31(3 Pt 2):705–717. doi: 10.1016/0092-8674(82)90325-7. [DOI] [PubMed] [Google Scholar]
  44. Sherline P., Mascardo R. Epidermal growth factor-induced centrosomal separation: mechanism and relationship to mitogenesis. J Cell Biol. 1982 Oct;95(1):316–322. doi: 10.1083/jcb.95.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Simons K., Fuller S. D. Cell surface polarity in epithelia. Annu Rev Cell Biol. 1985;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
  46. Singer S. J., Ball E. H., Geiger B., Chen W. T. Immunolabeling studies of cytoskeletal association in cultured cells. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):303–316. doi: 10.1101/sqb.1982.046.01.032. [DOI] [PubMed] [Google Scholar]
  47. Smith R. K., Johnson M. H. Analysis of the third and fourth cell cycles of mouse early development. J Reprod Fertil. 1986 Jan;76(1):393–399. doi: 10.1530/jrf.0.0760393. [DOI] [PubMed] [Google Scholar]
  48. Solomon F. Specification of cell morphology by endogenous determinants. J Cell Biol. 1981 Sep;90(3):547–553. doi: 10.1083/jcb.90.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Surani M. A., Barton S. C., Burling A. Differentiation of 2-cell and 8-cell mouse embryos arrested by cytoskeletal inhibitors. Exp Cell Res. 1980 Feb;125(2):275–286. doi: 10.1016/0014-4827(80)90123-8. [DOI] [PubMed] [Google Scholar]
  50. Sutherland A. E., Calarco-Gillam P. G. Analysis of compaction in the preimplantation mouse embryo. Dev Biol. 1983 Dec;100(2):328–338. doi: 10.1016/0012-1606(83)90227-0. [DOI] [PubMed] [Google Scholar]
  51. Szollosi D., Calarco P., Donahue R. P. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci. 1972 Sep;11(2):521–541. doi: 10.1242/jcs.11.2.521. [DOI] [PubMed] [Google Scholar]
  52. Tassin A. M., Maro B., Bornens M. Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol. 1985 Jan;100(1):35–46. doi: 10.1083/jcb.100.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Thyberg J., Moskalewski S. Microtubules and the organization of the Golgi complex. Exp Cell Res. 1985 Jul;159(1):1–16. doi: 10.1016/s0014-4827(85)80032-x. [DOI] [PubMed] [Google Scholar]
  54. Whittingham D. G., Wales R. G. Storage of two-cell mouse embryos in vitro. Aust J Biol Sci. 1969 Aug;22(4):1065–1068. doi: 10.1071/bi9691065. [DOI] [PubMed] [Google Scholar]
  55. Yumura S., Fukui Y. Filopodelike projections induced with dimethyl sulfoxide and their relevance to cellular polarity in Dictyostelium. J Cell Biol. 1983 Mar;96(3):857–865. doi: 10.1083/jcb.96.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zeligs J. D., Wollman S. H. Mitosis in rat thyroid epithelial cells in vivo. II. Centrioles and pericentriolar material. J Ultrastruct Res. 1979 Feb;66(2):97–108. doi: 10.1016/s0022-5320(79)90127-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES