Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 May 1;104(5):1389–1402. doi: 10.1083/jcb.104.5.1389

The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes

PMCID: PMC2114486  PMID: 2437129

Abstract

Actin, keratin, vinculin and desmoplakin organization were studied in primary mouse keratinocytes before and during Ca2+-induced cell contact formation. Double-label fluorescence shows that in cells cultured in low Ca2+ medium, keratin-containing intermediate filament bundles (IFB) and desmoplakin-containing spots are both concentrated towards the cell center in a region bounded by a series of concentric microfilament bundles (MFB). Within 5-30 min after raising Ca2+ levels, a discontinuous actin/vinculin-rich, submembranous zone of fluorescence appears at cell-cell interfaces. This zone is usually associated with short, perpendicular MFB, which become wider and longer with time. Later, IFB and the desmoplakin spots are seen aligned along the perpendicular MFB as they become redistributed to cell-cell interfaces where desmosomes form. Ultrastructural analysis confirms that before the Ca2+ switch, IFB and desmosomal components are found predominantly within the perimeter defined by the outermost of the concentric MFB. Individual IF often splay out, becoming interwoven into these MFB in the region of cell-substrate contact. In the first 30 min after the Ca2+ switch, areas of submembranous dense material (identified as adherens junctions), which are associated with the perpendicular MFB, can be seen at newly formed cell-cell contact sites. By 1-2 h, IFB- desmosomal component complexes are aligned with the perpendicular MFB as the complexes become redistributed to cell-cell interfaces. Cytochalasin D treatment causes the redistribution of actin into numerous patches; keratin-containing IFB undergo a concomitant redistribution, forming foci that coincide with the actin-containing aggregates. These results are consistent with an IF-MF association before and during desmosome formation in the primary mouse epidermal keratinocyte culture system, and with the temporal and spatial coordination of desmosome and adherens junction formation.

Full Text

The Full Text of this article is available as a PDF (9.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom G. S., Vallee R. B. Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol. 1983 Jun;96(6):1523–1531. doi: 10.1083/jcb.96.6.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Celis J. E., Small J. V., Larsen P. M., Fey S. J., De Mey J., Celis A. Intermediate filaments in monkey kidney TC7 cells: focal centers and interrelationship with other cytoskeletal systems. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1117–1121. doi: 10.1073/pnas.81.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooke P. A filamentous cytoskeleton in vertebrate smooth muscle fibers. J Cell Biol. 1976 Mar;68(3):539–556. doi: 10.1083/jcb.68.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cowin P., Kapprell H. P., Franke W. W., Tamkun J., Hynes R. O. Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell. 1986 Sep 26;46(7):1063–1073. doi: 10.1016/0092-8674(86)90706-3. [DOI] [PubMed] [Google Scholar]
  5. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
  8. Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Geiger B. Involvement of vinculin in contact-induced cytoskeletal interactions. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):671–682. doi: 10.1101/sqb.1982.046.01.063. [DOI] [PubMed] [Google Scholar]
  10. Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
  11. Geiger B., Schmid E., Franke W. W. Spatial distribution of proteins specific for desmosomes and adhaerens junctions in epithelial cells demonstrated by double immunofluorescence microscopy. Differentiation. 1983;23(3):189–205. doi: 10.1111/j.1432-0436.1982.tb01283.x. [DOI] [PubMed] [Google Scholar]
  12. Geiger B., Singer S. J. Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4769–4773. doi: 10.1073/pnas.77.8.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geiger B., Tokuyasu K. T., Dutton A. H., Singer S. J. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4127–4131. doi: 10.1073/pnas.77.7.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geiger B., Volk T., Volberg T. Molecular heterogeneity of adherens junctions. J Cell Biol. 1985 Oct;101(4):1523–1531. doi: 10.1083/jcb.101.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green K. J., Talian J. C., Goldman R. D. Relationship between intermediate filaments and microfilaments in cultured fibroblasts: evidence for common foci during cell spreading. Cell Motil Cytoskeleton. 1986;6(4):406–418. doi: 10.1002/cm.970060406. [DOI] [PubMed] [Google Scholar]
  16. Griffith L. M., Pollard T. D. The interaction of actin filaments with microtubules and microtubule-associated proteins. J Biol Chem. 1982 Aug 10;257(15):9143–9151. [PubMed] [Google Scholar]
  17. Hennings H., Holbrook K. A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res. 1983 Jan;143(1):127–142. doi: 10.1016/0014-4827(83)90115-5. [DOI] [PubMed] [Google Scholar]
  18. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  19. Hirokawa N., Cheney R. E., Willard M. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border. Cell. 1983 Mar;32(3):953–965. doi: 10.1016/0092-8674(83)90080-6. [DOI] [PubMed] [Google Scholar]
  20. Hubbard B. D., Lazarides E. Copurification of actin and desmin from chicken smooth muscle and their copolymerization in vitro to intermediate filaments. J Cell Biol. 1979 Jan;80(1):166–182. doi: 10.1083/jcb.80.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hull B. E., Staehelin L. A. The terminal web. A reevaluation of its structure and function. J Cell Biol. 1979 Apr;81(1):67–82. doi: 10.1083/jcb.81.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jackson B. W., Grund C., Schmid E., Bürki K., Franke W. W., Illmensee K. Formation of cytoskeletal elements during mouse embryogenesis. Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos. Differentiation. 1980;17(3):161–179. doi: 10.1111/j.1432-0436.1980.tb01093.x. [DOI] [PubMed] [Google Scholar]
  23. Jockusch B. M., Isenberg G. Interaction of alpha-actinin and vinculin with actin: opposite effects on filament network formation. Proc Natl Acad Sci U S A. 1981 May;78(5):3005–3009. doi: 10.1073/pnas.78.5.3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jones J. C., Goldman A. E., Steinert P. M., Yuspa S., Goldman R. D. Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells. Cell Motil. 1982;2(3):197–213. doi: 10.1002/cm.970020302. [DOI] [PubMed] [Google Scholar]
  25. Jones J. C., Goldman A. E., Yang H. Y., Goldman R. D. The organizational fate of intermediate filament networks in two epithelial cell types during mitosis. J Cell Biol. 1985 Jan;100(1):93–102. doi: 10.1083/jcb.100.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jones J. C., Goldman R. D. Intermediate filaments and the initiation of desmosome assembly. J Cell Biol. 1985 Aug;101(2):506–517. doi: 10.1083/jcb.101.2.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kartenbeck J., Schmid E., Franke W. W., Geiger B. Different modes of internalization of proteins associated with adhaerens junctions and desmosomes: experimental separation of lateral contacts induces endocytosis of desmosomal plaque material. EMBO J. 1982;1(6):725–732. doi: 10.1002/j.1460-2075.1982.tb01237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Knapp L. W., O'Guin W. M., Sawyer R. H. Drug-induced alterations of cytokeratin organization in cultured epithelial cells. Science. 1983 Feb 4;219(4584):501–503. doi: 10.1126/science.6186022. [DOI] [PubMed] [Google Scholar]
  29. Knapp L. W., O'Guin W. M., Sawyer R. H. Rearrangement of the keratin cytoskeleton after combined treatment with microtubule and microfilament inhibitors. J Cell Biol. 1983 Dec;97(6):1788–1794. doi: 10.1083/jcb.97.6.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leterrier J. F., Liem R. K., Shelanski M. L. Interactions between neurofilaments and microtubule-associated proteins: a possible mechanism for intraorganellar bridging. J Cell Biol. 1982 Dec;95(3):982–986. doi: 10.1083/jcb.95.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mattey D. L., Garrod D. R. Calcium-induced desmosome formation in cultured kidney epithelial cells. J Cell Sci. 1986 Sep;85:95–111. doi: 10.1242/jcs.85.1.95. [DOI] [PubMed] [Google Scholar]
  32. OVERTON J. Desmosome development in normal and reassociating cells in the early chick blastoderm. Dev Biol. 1962 Jun;4:532–548. doi: 10.1016/0012-1606(62)90056-8. [DOI] [PubMed] [Google Scholar]
  33. Overton J. Formation of junctions and cell sorting in aggregates of chick and mouse cells. Dev Biol. 1977 Jan;55(1):103–116. doi: 10.1016/0012-1606(77)90323-2. [DOI] [PubMed] [Google Scholar]
  34. Pankov R. G., Uschewa A. A., Tasheva B. T., Petrov P. T., Markov G. G. Actin participates in the structure of liver intermediate filaments. Cell Biol Int Rep. 1985 Nov;9(11):1003–1011. doi: 10.1016/0309-1651(85)90066-9. [DOI] [PubMed] [Google Scholar]
  35. Runge M. S., Laue T. M., Yphantis D. A., Lifsics M. R., Saito A., Altin M., Reinke K., Williams R. C., Jr ATP-induced formation of an associated complex between microtubules and neurofilaments. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1431–1435. doi: 10.1073/pnas.78.3.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sattilaro R. F., Dentler W. L., LeCluyse E. L. Microtubule-associated proteins (MAPs) and the organization of actin filaments in vitro. J Cell Biol. 1981 Aug;90(2):467–473. doi: 10.1083/jcb.90.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schloss J. A., Milsted A., Goldman R. D. Myosin subfragment binding for the localization of actin-like microfilaments in cultured cells. A light and electron microscope study. J Cell Biol. 1977 Sep;74(3):794–815. doi: 10.1083/jcb.74.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Starger J. M., Brown W. E., Goldman A. E., Goldman R. D. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol. 1978 Jul;78(1):93–109. doi: 10.1083/jcb.78.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Trelstad R. L., Hay E. D., Revel J. D. Cell contact during early morphogenesis in the chick embryo. Dev Biol. 1967 Jul;16(1):78–106. doi: 10.1016/0012-1606(67)90018-8. [DOI] [PubMed] [Google Scholar]
  41. Volberg T., Geiger B., Kartenbeck J., Franke W. W. Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions. J Cell Biol. 1986 May;102(5):1832–1842. doi: 10.1083/jcb.102.5.1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Volk T., Geiger B. A 135-kd membrane protein of intercellular adherens junctions. EMBO J. 1984 Oct;3(10):2249–2260. doi: 10.1002/j.1460-2075.1984.tb02123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Volk T., Geiger B. A-CAM: a 135-kD receptor of intercellular adherens junctions. I. Immunoelectron microscopic localization and biochemical studies. J Cell Biol. 1986 Oct;103(4):1441–1450. doi: 10.1083/jcb.103.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Volk T., Geiger B. A-CAM: a 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J Cell Biol. 1986 Oct;103(4):1451–1464. doi: 10.1083/jcb.103.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Watt F. M., Mattey D. L., Garrod D. R. Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J Cell Biol. 1984 Dec;99(6):2211–2215. doi: 10.1083/jcb.99.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yuspa S. H., Harris C. C. Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exp Cell Res. 1974 May;86(1):95–105. doi: 10.1016/0014-4827(74)90653-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES