Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 May 1;104(5):1361–1374. doi: 10.1083/jcb.104.5.1361

Adhesion molecules during somitogenesis in the avian embryo

PMCID: PMC2114487  PMID: 3553211

Abstract

In avian embryos, somites constitute the morphological unit of the metameric pattern. Somites are epithelia formed from a mesenchyme, the segmental plate, and are subsequently reorganized into dermatome, myotome, and sclerotome. In this study, we used somitogenesis as a basis to examine tissue remodeling during early vertebrate morphogenesis. Particular emphasis was put on the distribution and possible complementary roles of adhesion-promoting molecules, neural cell adhesion molecule (N-CAM), N-cadherin, fibronectin, and laminin. Both segmental plate and somitic cells exhibited in vitro calcium- dependent and calcium-independent systems of cell aggregation that could be inhibited respectively by anti-N-cadherin and anti-N-CAM antibodies. In vivo, the spatio-temporal expression of N-cadherin was closely associated with both the formation and local disruption of the somites. In contrast, changes in the prevalence of N-CAM did not strictly accompany the remodeling of the somitic epithelium into dermamyotome and sclerotome. It was also observed that fibronectin and laminin were reorganized secondarily in the extracellular spaces after CAM-mediated contacts were modulated. In an in vitro culture system of somites, N-cadherin was lost on individual cells released from somite explants and was reexpressed when these cells reached confluence and established intercellular contacts. In an assay of tissue dissociation in vitro, antibodies to N-cadherin or medium devoid of calcium strongly and reversibly dissociated explants of segmental plates and somites. Antibodies to N-CAM exhibited a smaller disrupting effect only on segmental plate explants. In contrast, antibodies to fibronectin and laminin did not perturb the cohesion of cells within the explants. These results emphasize the possible role of cell surface modulation of CAMs during the formation and remodeling of some transient embryonic epithelia. It is suggested that N-cadherin plays a major role in the control of tissue remodeling, a process in which N-CAM is also involved but to a lesser extent. The substratum adhesion molecules, fibronectin and laminin, do not appear to play a primary role in the regulation of these processes but may participate in cell positioning and in the stabilization of the epithelial structures.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyama H., Delouvée A., Thiery J. P. Cell adhesion mechanisms in gangliogenesis studied in avian embryo and in a model system. Cell Differ. 1985 Nov;17(4):247–260. doi: 10.1016/0045-6039(85)90499-3. [DOI] [PubMed] [Google Scholar]
  2. Bellairs R., Curtis A. S., Sanders E. J. Cell adhesiveness and embryonic differentiation. J Embryol Exp Morphol. 1978 Aug;46:207–213. [PubMed] [Google Scholar]
  3. Brackenbury R., Rutishauser U., Edelman G. M. Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):387–391. doi: 10.1073/pnas.78.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
  5. Brown S. S., Malinoff H. L., Wicha M. S. Connectin: cell surface protein that binds both laminin and actin. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5927–5930. doi: 10.1073/pnas.80.19.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen W. T., Hasegawa E., Hasegawa T., Weinstock C., Yamada K. M. Development of cell surface linkage complexes in cultured fibroblasts. J Cell Biol. 1985 Apr;100(4):1103–1114. doi: 10.1083/jcb.100.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheney C. M., Lash J. W. An increase in cell-cell adhesion in the chick segmental plate results in a meristic pattern. J Embryol Exp Morphol. 1984 Feb;79:1–10. [PubMed] [Google Scholar]
  8. Chuong C. M., Edelman G. M. Expression of cell-adhesion molecules in embryonic induction. I. Morphogenesis of nestling feathers. J Cell Biol. 1985 Sep;101(3):1009–1026. doi: 10.1083/jcb.101.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chuong C. M., Edelman G. M. Expression of cell-adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers. J Cell Biol. 1985 Sep;101(3):1027–1043. doi: 10.1083/jcb.101.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cowin P., Mattey D., Garrod D. Identification of desmosomal surface components (desmocollins) and inhibition of desmosome formation by specific Fab'. J Cell Sci. 1984 Aug;70:41–60. doi: 10.1242/jcs.70.1.41. [DOI] [PubMed] [Google Scholar]
  11. Crossin K. L., Chuong C. M., Edelman G. M. Expression sequences of cell adhesion molecules. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6942–6946. doi: 10.1073/pnas.82.20.6942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crossin K. L., Hoffman S., Grumet M., Thiery J. P., Edelman G. M. Site-restricted expression of cytotactin during development of the chicken embryo. J Cell Biol. 1986 May;102(5):1917–1930. doi: 10.1083/jcb.102.5.1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Damsky C. H., Richa J., Solter D., Knudsen K., Buck C. A. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell. 1983 Sep;34(2):455–466. doi: 10.1016/0092-8674(83)90379-3. [DOI] [PubMed] [Google Scholar]
  14. Duband J. L., Rocher S., Chen W. T., Yamada K. M., Thiery J. P. Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. J Cell Biol. 1986 Jan;102(1):160–178. doi: 10.1083/jcb.102.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Duband J. L., Thiery J. P. Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation. Dev Biol. 1982 Dec;94(2):337–350. doi: 10.1016/0012-1606(82)90352-9. [DOI] [PubMed] [Google Scholar]
  16. Edelman G. M. Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem. 1985;54:135–169. doi: 10.1146/annurev.bi.54.070185.001031. [DOI] [PubMed] [Google Scholar]
  17. Edelman G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol. 1986;2:81–116. doi: 10.1146/annurev.cb.02.110186.000501. [DOI] [PubMed] [Google Scholar]
  18. Edelman G. M., Gallin W. J., Delouvée A., Cunningham B. A., Thiery J. P. Early epochal maps of two different cell adhesion molecules. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4384–4388. doi: 10.1073/pnas.80.14.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ekblom P. Formation of basement membranes in the embryonic kidney: an immunohistological study. J Cell Biol. 1981 Oct;91(1):1–10. doi: 10.1083/jcb.91.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gallin W. J., Chuong C. M., Finkel L. H., Edelman G. M. Antibodies to liver cell adhesion molecule perturb inductive interactions and alter feather pattern and structure. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8235–8239. doi: 10.1073/pnas.83.21.8235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gallin W. J., Edelman G. M., Cunningham B. A. Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1038–1042. doi: 10.1073/pnas.80.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gillespie L. L., Armstrong J. B., Steinberg M. S. Experimental evidence for a proteinaceous presegmental wave required for morphogenesis of axolotl mesoderm. Dev Biol. 1985 Jan;107(1):220–226. doi: 10.1016/0012-1606(85)90390-2. [DOI] [PubMed] [Google Scholar]
  23. Grumet M., Hoffman S., Crossin K. L., Edelman G. M. Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8075–8079. doi: 10.1073/pnas.82.23.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hatta K., Okada T. S., Takeichi M. A monoclonal antibody disrupting calcium-dependent cell-cell adhesion of brain tissues: possible role of its target antigen in animal pattern formation. Proc Natl Acad Sci U S A. 1985 May;82(9):2789–2793. doi: 10.1073/pnas.82.9.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hatta K., Takeichi M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature. 1986 Apr 3;320(6061):447–449. doi: 10.1038/320447a0. [DOI] [PubMed] [Google Scholar]
  26. Hoffman S., Sorkin B. C., White P. C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B. A., Edelman G. M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem. 1982 Jul 10;257(13):7720–7729. [PubMed] [Google Scholar]
  27. Horwitz A., Duggan K., Greggs R., Decker C., Buck C. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol. 1985 Dec;101(6):2134–2144. doi: 10.1083/jcb.101.6.2134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hyafil F., Morello D., Babinet C., Jacob F. A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell. 1980 Oct;21(3):927–934. doi: 10.1016/0092-8674(80)90456-0. [DOI] [PubMed] [Google Scholar]
  29. Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol. 1985;1:67–90. doi: 10.1146/annurev.cb.01.110185.000435. [DOI] [PubMed] [Google Scholar]
  31. Imhof B. A., Vollmers H. P., Goodman S. L., Birchmeier W. Cell-cell interaction and polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell. 1983 Dec;35(3 Pt 2):667–675. doi: 10.1016/0092-8674(83)90099-5. [DOI] [PubMed] [Google Scholar]
  32. Krotoski D. M., Domingo C., Bronner-Fraser M. Distribution of a putative cell surface receptor for fibronectin and laminin in the avian embryo. J Cell Biol. 1986 Sep;103(3):1061–1071. doi: 10.1083/jcb.103.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lash J. W., Seitz A. W., Cheney C. M., Ostrovsky D. On the role of fibronectin during the compaction stage of somitogenesis in the chick embryo. J Exp Zool. 1984 Nov;232(2):197–206. doi: 10.1002/jez.1402320207. [DOI] [PubMed] [Google Scholar]
  34. Lash J. W. Somitogenesis: investigations on the mechanism of compaction in the presomitic mass and a possible role for fibronectin. Prog Clin Biol Res. 1985;171:45–60. [PubMed] [Google Scholar]
  35. Leptin M. The fibronectin receptor family. Nature. 1986 Jun 19;321(6072):728–728. doi: 10.1038/321728a0. [DOI] [PubMed] [Google Scholar]
  36. Lipton B. H., Jacobson A. G. Experimental analysis of the mechanisms of somite morphogenesis. Dev Biol. 1974 May;38(1):91–103. doi: 10.1016/0012-1606(74)90261-9. [DOI] [PubMed] [Google Scholar]
  37. Meier S. Development of the chick embryo mesoblast. Formation of the embryonic axis and establishment of the metameric pattern. Dev Biol. 1979 Nov;73(1):24–45. doi: 10.1016/0012-1606(79)90135-0. [DOI] [PubMed] [Google Scholar]
  38. Nicolet G. Is the presumptive notochord responsible for somite genesis in the chick? J Embryol Exp Morphol. 1970 Nov;24(3):467–478. [PubMed] [Google Scholar]
  39. Obrink B. Epithelial cell adhesion molecules. Exp Cell Res. 1986 Mar;163(1):1–21. doi: 10.1016/0014-4827(86)90554-9. [DOI] [PubMed] [Google Scholar]
  40. Ostrovsky D., Cheney C. M., Seitz A. W., Lash J. W. Fibronectin distribution during somitogenesis in the chick embryo. Cell Differ. 1983 Nov;13(3):217–223. doi: 10.1016/0045-6039(83)90092-1. [DOI] [PubMed] [Google Scholar]
  41. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  42. Richardson G. P., Crossin K. L., Chuong C. M., Edelman G. M. Expression of cell adhesion molecules during embryonic induction. III. Development of the otic placode. Dev Biol. 1987 Jan;119(1):217–230. doi: 10.1016/0012-1606(87)90223-5. [DOI] [PubMed] [Google Scholar]
  43. Sanders E. J. Ultrastructural immunocytochemical localization of fibronectin in the early chick embryo. J Embryol Exp Morphol. 1982 Oct;71:155–170. [PubMed] [Google Scholar]
  44. Tamkun J. W., DeSimone D. W., Fonda D., Patel R. S., Buck C., Horwitz A. F., Hynes R. O. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 1986 Jul 18;46(2):271–282. doi: 10.1016/0092-8674(86)90744-0. [DOI] [PubMed] [Google Scholar]
  45. Thiery J. P., Brackenbury R., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem. 1977 Oct 10;252(19):6841–6845. [PubMed] [Google Scholar]
  46. Thiery J. P., Delouvée A., Gallin W. J., Cunningham B. A., Edelman G. M. Ontogenetic expression of cell adhesion molecules: L-CAM is found in epithelia derived from the three primary germ layers. Dev Biol. 1984 Mar;102(1):61–78. doi: 10.1016/0012-1606(84)90175-1. [DOI] [PubMed] [Google Scholar]
  47. Thiery J. P., Duband J. L., Rutishauser U., Edelman G. M. Cell adhesion molecules in early chicken embryogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6737–6741. doi: 10.1073/pnas.79.21.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Thiery J. P., Duband J. L., Tucker G. C. Cell migration in the vertebrate embryo: role of cell adhesion and tissue environment in pattern formation. Annu Rev Cell Biol. 1985;1:91–113. doi: 10.1146/annurev.cb.01.110185.000515. [DOI] [PubMed] [Google Scholar]
  49. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  50. Urushihara H., Ozaki H. S., Takeichi M. Immunological detection of cell surface components related with aggregation of Chinese hamster and chick embryonic cells. Dev Biol. 1979 May;70(1):206–216. doi: 10.1016/0012-1606(79)90017-4. [DOI] [PubMed] [Google Scholar]
  51. Volk T., Geiger B. A 135-kd membrane protein of intercellular adherens junctions. EMBO J. 1984 Oct;3(10):2249–2260. doi: 10.1002/j.1460-2075.1984.tb02123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Volk T., Geiger B. A-CAM: a 135-kD receptor of intercellular adherens junctions. I. Immunoelectron microscopic localization and biochemical studies. J Cell Biol. 1986 Oct;103(4):1441–1450. doi: 10.1083/jcb.103.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Volk T., Geiger B. A-CAM: a 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J Cell Biol. 1986 Oct;103(4):1451–1464. doi: 10.1083/jcb.103.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yamada K. M., Akiyama S. K., Hasegawa T., Hasegawa E., Humphries M. J., Kennedy D. W., Nagata K., Urushihara H., Olden K., Chen W. T. Recent advances in research on fibronectin and other cell attachment proteins. J Cell Biochem. 1985;28(2):79–97. doi: 10.1002/jcb.240280202. [DOI] [PubMed] [Google Scholar]
  55. Yoshida-Noro C., Suzuki N., Takeichi M. Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Dev Biol. 1984 Jan;101(1):19–27. doi: 10.1016/0012-1606(84)90112-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES