Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jun 1;104(6):1455–1470. doi: 10.1083/jcb.104.6.1455

Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture

PMCID: PMC2114489  PMID: 3108264

Abstract

Interphase chromosome organization in four different Drosophila melanogaster tissues, covering three to four levels of polyteny, has been analyzed. The results are based primarily on three-dimensional reconstructions from unfixed tissues using a computer-based data collection and modeling system. A characteristic organization of chromosomes in each cell type is observed, independent of polyteny, with some packing motifs common to several or all tissues and others tissue-specific. All chromosomes display a right-handed coiling chirality, despite large differences in size and degree of coiling. Conversely, in each cell type, the heterochromatic centromeric regions have a unique structure, tendency to associate, and intranuclear location. The organization of condensed nucleolar chromatin is also tissue-specific. The tightly coiled prothoracic gland chromosomes are arrayed in a similar fashion to the much larger salivary gland chromosomes described previously, having polarized orientations, nonintertwined spatial domains, and close packing of the arms of each autosome, whereas hindgut and especially the unusually straight midgut chromosomes display striking departures from these regularities. Surprisingly, gut chromosomes often appear to be broken in the centric heterochromatin. Severe deformations of midgut nuclei observed during gut contractions in living larvae may account for their unusual properties. Finally, morphometric measurements of chromosome and nuclear dimensions provide insights into chromosome growth and substructure and also suggest an unexpected parallel with diploid chromatin organization.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal S. K., King R. C. Comparative study of the ring glands from wild type and 1(2)gl mutant drosophila melanogaster. J Morphol. 1969 Oct;129(2):171–199. doi: 10.1002/jmor.1051290204. [DOI] [PubMed] [Google Scholar]
  2. Braun W. Representation of short and long-range handedness in protein structures by signed distance maps. J Mol Biol. 1983 Feb 5;163(4):613–621. doi: 10.1016/0022-2836(83)90114-6. [DOI] [PubMed] [Google Scholar]
  3. Burgoyne L. A., Wagar M. A., Atkinson M. R. Calcium-dependent priming of DNA synthesis in isolated rat liver nuclei. Biochem Biophys Res Commun. 1970 Apr 24;39(2):254–259. doi: 10.1016/0006-291x(70)90786-2. [DOI] [PubMed] [Google Scholar]
  4. Cozzarelli N. R., Krasnow M. A., Gerrard S. P., White J. H. A topological treatment of recombination and topoisomerases. Cold Spring Harb Symp Quant Biol. 1984;49:383–400. doi: 10.1101/sqb.1984.049.01.045. [DOI] [PubMed] [Google Scholar]
  5. DeSalle R., Templeton A. R. The molecular through ecological genetics of abnormal abdomen. III. Tissue-specific differential replication of ribosomal genes modulates the abnormal abdomen phenotype in Drosophila mercatorum. Genetics. 1986 Apr;112(4):877–886. doi: 10.1093/genetics/112.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Echalier G., Ohanessian A. In vitro culture of Drosophila melanogaster embryonic cells. In Vitro. 1970 Nov-Dec;6(3):162–172. doi: 10.1007/BF02617759. [DOI] [PubMed] [Google Scholar]
  7. Endow S. A. Nucleolar dominance in polytene cells of Drosophila. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4427–4431. doi: 10.1073/pnas.80.14.4427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartmann-Goldstein I., Goldstein D. J. Effect of temperature on morphology and DNA-content of polytene chromosomes in Drosophila. Chromosoma. 1979 Mar 12;71(3):333–346. doi: 10.1007/BF00287139. [DOI] [PubMed] [Google Scholar]
  9. Hochstrasser M., Mathog D., Gruenbaum Y., Saumweber H., Sedat J. W. Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J Cell Biol. 1986 Jan;102(1):112–123. doi: 10.1083/jcb.102.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hochstrasser M., Sedat J. W. Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation. J Cell Biol. 1987 Jun;104(6):1471–1483. doi: 10.1083/jcb.104.6.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hsu T. C., Cooper J. E., Mace M. L., Jr, Brinkley B. R. Arrangement of centromeres in mouse cells. Chromosoma. 1971;34(1):73–87. doi: 10.1007/BF00285517. [DOI] [PubMed] [Google Scholar]
  12. James T. C., Elgin S. C. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986 Nov;6(11):3862–3872. doi: 10.1128/mcb.6.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laird C. D. DNA of Drosophila chromosomes. Annu Rev Genet. 1973;7:177–204. doi: 10.1146/annurev.ge.07.120173.001141. [DOI] [PubMed] [Google Scholar]
  14. Lakhotia S. C., Jacob J. EM autoradiographic studies on polytene nuclei of Drosophila melanogaster. II. Organization and transcriptive activity of the chromocentre. Exp Cell Res. 1974 Jun;86(2):253–263. doi: 10.1016/0014-4827(74)90711-3. [DOI] [PubMed] [Google Scholar]
  15. Lakhotia S. C., Sinha P. Replication in Drosophila chromosomes. X. Two kinds of active replicons in salivary gland polytene nuclei and their relation to chromosomal replication patterns. Chromosoma. 1983;88(4):265–276. doi: 10.1007/BF00292903. [DOI] [PubMed] [Google Scholar]
  16. Mathog D., Hochstrasser M., Gruenbaum Y., Saumweber H., Sedat J. Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei. 1984 Mar 29-Apr 4Nature. 308(5958):414–421. doi: 10.1038/308414a0. [DOI] [PubMed] [Google Scholar]
  17. Mathog D., Hochstrasser M., Sedat J. W. Light microscope based analysis of three-dimensional structure: applications to the study of Drosophila salivary gland nuclei. I. Data collection and analysis. J Microsc. 1985 Mar;137(Pt 3):241–252. doi: 10.1111/j.1365-2818.1985.tb02582.x. [DOI] [PubMed] [Google Scholar]
  18. Mortin L. I., Sedat J. W. Structure of Drosophila polytene chromosomes. Evidence for a toroidal organization of the bands. J Cell Sci. 1982 Oct;57:73–113. doi: 10.1242/jcs.57.1.73. [DOI] [PubMed] [Google Scholar]
  19. Ohnuki Y. Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma. 1968;25(4):402–428. doi: 10.1007/BF02327721. [DOI] [PubMed] [Google Scholar]
  20. Osheim Y. N., Miller O. L., Jr Novel amplification and transcriptional activity of chorion genes in Drosophila melanogaster follicle cells. Cell. 1983 Jun;33(2):543–553. doi: 10.1016/0092-8674(83)90435-x. [DOI] [PubMed] [Google Scholar]
  21. Pardu M. L., Gerbi S. A., Eckhardt R. A., Gall J. G. Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera. Chromosoma. 1970;29(3):268–290. doi: 10.1007/BF00325943. [DOI] [PubMed] [Google Scholar]
  22. Richards G. The polytene chromosomes in the fat body nuclei of Drosophila melanogaster. Chromosoma. 1980;79(2):241–250. doi: 10.1007/BF01175189. [DOI] [PubMed] [Google Scholar]
  23. Rudkin G. T. Replication in polytene chromosomes. Results Probl Cell Differ. 1972;4:59–85. doi: 10.1007/978-3-540-37164-9_3. [DOI] [PubMed] [Google Scholar]
  24. Sedat J., Manuelidis L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):331–350. doi: 10.1101/sqb.1978.042.01.035. [DOI] [PubMed] [Google Scholar]
  25. Sundin O., Varshavsky A. Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell. 1981 Sep;25(3):659–669. doi: 10.1016/0092-8674(81)90173-2. [DOI] [PubMed] [Google Scholar]
  26. Welch R M. A Developmental Analysis of the Lethal Mutant L(2)gl of Drosophila Melanogaster Based on Cytophotometric Determination of Nuclear Desoxyribonucleic Acid (Dna) Content. Genetics. 1957 Sep;42(5):544–559. doi: 10.1093/genetics/42.5.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williams S. P., Athey B. D., Muglia L. J., Schappe R. S., Gough A. H., Langmore J. P. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J. 1986 Jan;49(1):233–248. doi: 10.1016/S0006-3495(86)83637-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES