Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jun 1;104(6):1539–1551. doi: 10.1083/jcb.104.6.1539

The Dictyostelium discoideum 30,000-dalton protein is an actin filament- bundling protein that is selectively present in filopodia

PMCID: PMC2114503  PMID: 3294856

Abstract

The interaction with actin and intracellular localization of the 30,000- D actin-binding protein from the cellular slime mold Dictyostelium discoideum have been investigated to analyze the potential contributions of this protein to cell structure and movement. The formation of anisotropic cross-linked filament networks (bundles) containing actin and the 30,000-D protein has been observed by electron microscopy, light scattering, viscometry, and polarization microscopy. Cosedimentation experiments indicate that a maximum of one molecule of the 30,000-D protein can bind to 10 actin monomers in filaments with an apparent association constant of 1 X 10(7) liters/mol. Inhibition of the interaction of the 30,000-D protein with actin by either magnesium or calcium was observed by viscometry, light scattering, polarization microscopy, and direct binding assays. However, the concentration of magnesium required to diminish the interaction is greater than 100 times greater than that of calcium. The association constant of the 30,000-D protein for actin is 4.2 X 10(6) liters/mol, or less than 1 X 10(5) liters/mol in the presence of increased concentrations of either Mg2+ or Ca2+, respectively. Enzyme-linked immunoassays indicate that the 30,000-D protein comprises 0.04% of the protein in D. discoideum. Extensive interaction of the 30,000-D protein with actin in cytoplasm is predicted from these measurements of the concentration of this protein and its affinity for actin. The distribution of the 30,000-D protein was analyzed by immunofluorescence microscopy using mono- specific affinity-purified polyclonal antibody. The 30,000-D protein exhibits a diffuse distribution in cytoplasm, is excluded from prominent organelles, and is quite prominent in fine extensions protruding from the cell surface. The number, length, and distribution of these extensions containing the 30,000-D protein are similar to those of filopodia observed by scanning electron microscopy. To analyze the effects of cell thickness and the distribution of organelles on the immunofluorescence localization, fluorescein-labeled BSA was incorporated into the cytoplasm of living cells before fixation and staining using a sonication loading technique. The results indicate that the 30,000-D protein is selectively incorporated into filopodia. These results provide a clear distinction between the multiple actin- cross-linking proteins present in D. discoideum, and suggest that the 30,000-D protein contributes to organization of bundles of actin filaments in filopodia.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht-Buehler G. Filopodia of spreading 3T3 cells. Do they have a substrate-exploring function? J Cell Biol. 1976 May;69(2):275–286. doi: 10.1083/jcb.69.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D. New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu Rev Biophys Biophys Chem. 1985;14:265–290. doi: 10.1146/annurev.bb.14.060185.001405. [DOI] [PubMed] [Google Scholar]
  3. Bastiani M. J., Goodman C. S. Neuronal growth cones: specific interactions mediated by filopodial insertion and induction of coated vesicles. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1849–1853. doi: 10.1073/pnas.81.6.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  5. Bonder E. M., Fishkind D. J., Mooseker M. S. Direct measurement of critical concentrations and assembly rate constants at the two ends of an actin filament. Cell. 1983 Sep;34(2):491–501. doi: 10.1016/0092-8674(83)90382-3. [DOI] [PubMed] [Google Scholar]
  6. Bretscher A., Weber K. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol. 1980 Jul;86(1):335–340. doi: 10.1083/jcb.86.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bretscher A., Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980 Jul;20(3):839–847. doi: 10.1016/0092-8674(80)90330-x. [DOI] [PubMed] [Google Scholar]
  8. Brier J., Fechheimer M., Swanson J., Taylor D. L. Abundance, relative gelation activity, and distribution of the 95,000-dalton actin-binding protein from Dictyostelium discoideum. J Cell Biol. 1983 Jul;97(1):178–185. doi: 10.1083/jcb.97.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown S. S. A Ca2+ insensitive actin-crosslinking protein from Dicytostelium discoideum. Cell Motil. 1985;5(6):529–543. doi: 10.1002/cm.970050608. [DOI] [PubMed] [Google Scholar]
  10. Bryan J., Kane R. E. Separation and interaction of the major components of sea urchin actin gel. J Mol Biol. 1978 Oct 25;125(2):207–224. doi: 10.1016/0022-2836(78)90345-5. [DOI] [PubMed] [Google Scholar]
  11. Burgess D. R., Schroeder T. E. Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs. J Cell Biol. 1977 Sep;74(3):1032–1037. doi: 10.1083/jcb.74.3.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Condeelis J., Vahey M. A calcium- and pH-regulated protein from Dictyostelium discoideum that cross-links actin filaments. J Cell Biol. 1982 Aug;94(2):466–471. doi: 10.1083/jcb.94.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DeRosier D. J., Censullo R. Structure of F-actin needles from extracts of sea urchin oocytes. J Mol Biol. 1981 Feb 15;146(1):77–99. doi: 10.1016/0022-2836(81)90367-3. [DOI] [PubMed] [Google Scholar]
  14. DeRosier D. J., Edds K. T. Evidence for fascin cross-links between the actin filaments in coelomocyte filopodia. Exp Cell Res. 1980 Apr;126(2):490–494. doi: 10.1016/0014-4827(80)90295-5. [DOI] [PubMed] [Google Scholar]
  15. Eckert B. S., Lazarides E. Localization of actin in Dictyostelium amebas by immunofluorescence. J Cell Biol. 1978 Jun;77(3):714–721. doi: 10.1083/jcb.77.3.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eckert B. S., Warren R. H., Rubin R. W. Structural and biochemical aspects of cell motility in amebas of Dictyostelium discoideum. J Cell Biol. 1977 Feb;72(2):339–350. doi: 10.1083/jcb.72.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fechheimer M., Denny C., Murphy R. F., Taylor D. L. Measurement of cytoplasmic pH in Dictyostelium discoideum by using a new method for introducing macromolecules into living cells. Eur J Cell Biol. 1986 Apr;40(2):242–247. [PubMed] [Google Scholar]
  18. Fechheimer M., Taylor D. L. Isolation and characterization of a 30,000-dalton calcium-sensitive actin cross-linking protein from Dictyostelium discoideum. J Biol Chem. 1984 Apr 10;259(7):4514–4520. [PubMed] [Google Scholar]
  19. Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
  20. Gershman L. C., Newman J., Selden L. A., Estes J. E. Bound-cation exchange affects the lag phase in actin polymerization. Biochemistry. 1984 May 8;23(10):2199–2203. doi: 10.1021/bi00305a015. [DOI] [PubMed] [Google Scholar]
  21. Glenney J. R., Jr, Kaulfus P., Matsudaira P., Weber K. F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. J Biol Chem. 1981 Sep 10;256(17):9283–9288. [PubMed] [Google Scholar]
  22. Griffith L. M., Pollard T. D. Cross-linking of actin filament networks by self-association and actin-binding macromolecules. J Biol Chem. 1982 Aug 10;257(15):9135–9142. [PubMed] [Google Scholar]
  23. Hellewell S. B., Taylor D. L. The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis. J Cell Biol. 1979 Dec;83(3):633–648. doi: 10.1083/jcb.83.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hudspeth A. J. The cellular basis of hearing: the biophysics of hair cells. Science. 1985 Nov 15;230(4727):745–752. doi: 10.1126/science.2414845. [DOI] [PubMed] [Google Scholar]
  26. Kobilinsky L., Weinstein B. I., Beattie D. S. The induction of filopodia in the cellular slime mold Dictyostelium discoideum by cyclic adenosine monophosphate: mechanism of aggregation. Dev Biol. 1976 Feb;48(2):477–481. doi: 10.1016/0012-1606(76)90111-1. [DOI] [PubMed] [Google Scholar]
  27. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Luna E. J., Goodloe-Holland C. M., Ingalls H. M. A membrane cytoskeleton from Dictyostelium discoideum. II. Integral proteins mediate the binding of plasma membranes to F-actin affinity beads. J Cell Biol. 1984 Jul;99(1 Pt 1):58–70. doi: 10.1083/jcb.99.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Maruyama K. Effects of trace amounts of Ca2+ and Mg2+ on the polymerization of actin. Biochim Biophys Acta. 1981 Jan 30;667(1):139–142. doi: 10.1016/0005-2795(81)90074-x. [DOI] [PubMed] [Google Scholar]
  32. Matsudaira P., Mandelkow E., Renner W., Hesterberg L. K., Weber K. Role of fimbrin and villin in determining the interfilament distances of actin bundles. Nature. 1983 Jan 20;301(5897):209–214. doi: 10.1038/301209a0. [DOI] [PubMed] [Google Scholar]
  33. McFarland W., Schechter G. P. The lymphocyte in immunological reactions in vitro: ultrastructural studies. Blood. 1970 May;35(5):683–688. [PubMed] [Google Scholar]
  34. McNeil P. L., Murphy R. F., Lanni F., Taylor D. L. A method for incorporating macromolecules into adherent cells. J Cell Biol. 1984 Apr;98(4):1556–1564. doi: 10.1083/jcb.98.4.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mooseker M. S. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985;1:209–241. doi: 10.1146/annurev.cb.01.110185.001233. [DOI] [PubMed] [Google Scholar]
  36. Otto J. J., Kane R. E., Bryan J. Formation of filopodia in coelomocytes: localization of fascin, a 58,000 dalton actin cross-linking protein. Cell. 1979 Jun;17(2):285–293. doi: 10.1016/0092-8674(79)90154-5. [DOI] [PubMed] [Google Scholar]
  37. Otto J. J., Schroeder T. E. Assembly-disassembly of actin bundles in starfish oocytes: an analysis of actin-associated proteins in the isolated cortex. Dev Biol. 1984 Feb;101(2):263–273. doi: 10.1016/0012-1606(84)90140-4. [DOI] [PubMed] [Google Scholar]
  38. Perrin D. D., Sayce I. G. Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species. Talanta. 1967 Jul;14(7):833–842. doi: 10.1016/0039-9140(67)80105-x. [DOI] [PubMed] [Google Scholar]
  39. Rifkin J. L., Isik F. Effects of folic acid upon filopodia of Dictyostelium discoideum vegetative amoebae. Cell Motil. 1984;4(2):129–135. doi: 10.1002/cm.970040206. [DOI] [PubMed] [Google Scholar]
  40. Rifkin J. L., Speisman R. A. Filamentous extensions of vegetative amoebae of the cellular slime mold Dictyostelium. Trans Am Microsc Soc. 1976 Apr;95(2):165–173. [PubMed] [Google Scholar]
  41. Salisbury J. L., Condeelis J. S., Maihle N. J., Satir P. Calmodulin localization during capping and receptor-mediated endocytosis. Nature. 1981 Nov 12;294(5837):163–166. doi: 10.1038/294163a0. [DOI] [PubMed] [Google Scholar]
  42. Selden L. A., Gershman L. C., Estes J. E. A kinetic comparison between Mg-actin and Ca-actin. J Muscle Res Cell Motil. 1986 Jun;7(3):215–224. doi: 10.1007/BF01753554. [DOI] [PubMed] [Google Scholar]
  43. Siegel D. L., Branton D. Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes. J Cell Biol. 1985 Mar;100(3):775–785. doi: 10.1083/jcb.100.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Spudich J. A., Amos L. A. Structure of actin filament bundles from microvilli of sea urchin eggs. J Mol Biol. 1979 Apr 5;129(2):319–331. doi: 10.1016/0022-2836(79)90285-7. [DOI] [PubMed] [Google Scholar]
  45. Steinert P. M., Parry D. A. Intermediate filaments: conformity and diversity of expression and structure. Annu Rev Cell Biol. 1985;1:41–65. doi: 10.1146/annurev.cb.01.110185.000353. [DOI] [PubMed] [Google Scholar]
  46. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  47. Talian J. C., Olmsted J. B., Goldman R. D. A rapid procedure for preparing fluorescein-labeled specific antibodies from whole antiserum: its use in analyzing cytoskeletal architecture. J Cell Biol. 1983 Oct;97(4):1277–1282. doi: 10.1083/jcb.97.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Taylor D. L., Condeelis J. S. Cytoplasmic structure and contractility in amoeboid cells. Int Rev Cytol. 1979;56:57–144. doi: 10.1016/s0074-7696(08)61821-5. [DOI] [PubMed] [Google Scholar]
  49. Taylor D. L., Wang Y. L., Heiple J. M. Contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amebas. J Cell Biol. 1980 Aug;86(2):590–598. doi: 10.1083/jcb.86.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tilney L. G., Derosier D. J., Mulroy M. J. The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol. 1980 Jul;86(1):244–259. doi: 10.1083/jcb.86.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]
  53. White E., Tolbert E. M., Katz E. R. Identification of tubulin in Dictyostelium discoideum: characterization of some unique properties. J Cell Biol. 1983 Oct;97(4):1011–1019. doi: 10.1083/jcb.97.4.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yumura S., Fukui Y. Filopodelike projections induced with dimethyl sulfoxide and their relevance to cellular polarity in Dictyostelium. J Cell Biol. 1983 Mar;96(3):857–865. doi: 10.1083/jcb.96.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yumura S., Fukui Y. Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium. Nature. 1985 Mar 14;314(6007):194–196. doi: 10.1038/314194a0. [DOI] [PubMed] [Google Scholar]
  56. Yumura S., Mori H., Fukui Y. Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J Cell Biol. 1984 Sep;99(3):894–899. doi: 10.1083/jcb.99.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES