Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Mar 1;104(3):761–767. doi: 10.1083/jcb.104.3.761

Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein

PMCID: PMC2114523  PMID: 3102505

Abstract

Heavy chain-binding protein (BiP) associates posttranslationally with nascent Ig heavy chains in the endoplasmic reticulum (ER) and remains associated with these heavy chains until they assemble with light chains. The heavy chain-BiP complex can be precipitated by antibody reagents against either component. To identify sites on heavy chain molecules that are important for association with BiP, we have examined 30 mouse myelomas and hybridomas that synthesize Ig heavy chains with well characterized deletions. Mutant Ig heavy chains that lack the CH1 domain could not be demonstrated to associate with BiP, whereas mutant Ig heavy chains with deletions of the CH2 or CH3 domain were still able to associate with BiP. In two light chain negative cell lines that produced heavy chains with deletions of the CH1 domain, free heavy chains were secreted. When Ig assembly and secretion were examined in mutants that did not associate with BiP, and were compared with normal parental lines, it was found that the rate of Ig secretion was increased in the mutant lines and that the Ig molecules were secreted in various stages of assembly. In one mutant line (CH1-) approximately one-third of the secreted Ig molecules were incompletely assembled, whereas the Ig molecules secreted by the parental line were completely assembled. Our data show the CH1 domain to be important for association with BiP and that when this association does not occur, incompletely assembled heavy chains can be secreted. This implies a role for BiP in preventing the transport of unassembled Ig molecules from the ER.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel C. A., Grey H. M. Studies on the structure of mouse gamma-A myeloma proteins. Biochemistry. 1968 Jul;7(7):2682–2688. doi: 10.1021/bi00847a035. [DOI] [PubMed] [Google Scholar]
  2. Baczynsky W. O., Sugii S., Murialdo H., Pennell N., Filkin C., Hozumi N., Shulman M. J. Nucleotide sequences of immunoglobulin mu heavy chain deletion mutants. Nucleic Acids Res. 1983 Nov 11;11(21):7471–7485. doi: 10.1093/nar/11.21.7471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumal R., Potter M., Scharff M. D. Synthesis, assembly, and secretion of gamma globulin by mouse myeloma cells. 3. Assembly of the three subclasses of IgG. J Exp Med. 1971 Nov 1;134(5):1316–1334. doi: 10.1084/jem.134.5.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergman L. W., Kuehl W. M. Temporal relationship of translation and glycosylation of immunoglobulin heavy and light chains. Biochemistry. 1978 Nov 28;17(24):5174–5180. doi: 10.1021/bi00617a017. [DOI] [PubMed] [Google Scholar]
  5. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bole D. G., Hendershot L. M., Kearney J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986 May;102(5):1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buxbaum J., Scharff M. D. The synthesis, assembly, and secretion of gamma globulin by mouse myeloma cells. VI. Assembly of IgM proteins. J Exp Med. 1973 Jul 1;138(1):278–288. doi: 10.1084/jem.138.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dackowski W., Morrison S. L. Two alpha heavy chain disease proteins with different genomic deletions demonstrate that nonexpressed alpha heavy chain genes contain methylated bases. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7091–7095. doi: 10.1073/pnas.78.11.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fitting T., Kabat D. Evidence for a glycoprotein "signal" involved in transport between subcellular organelles. Two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J Biol Chem. 1982 Dec 10;257(23):14011–14017. [PubMed] [Google Scholar]
  10. Franklin E. C., Frangione B. Structural variants of human and murine immunoglobulins. Contemp Top Mol Immunol. 1975;4:89–126. doi: 10.1007/978-1-4615-8930-3_4. [DOI] [PubMed] [Google Scholar]
  11. Haas I. G., Wabl M. Immunoglobulin heavy chain binding protein. Nature. 1983 Nov 24;306(5941):387–389. doi: 10.1038/306387a0. [DOI] [PubMed] [Google Scholar]
  12. Hickman S., Kornfeld S. Effect of tunicamycin on IgM, IgA, and IgG secretion by mouse plasmacytoma cells. J Immunol. 1978 Sep;121(3):990–996. [PubMed] [Google Scholar]
  13. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  14. Jerry L. M., Kunkel H. G., Grey H. M. Absence of disulfide bonds linking the heavy and light chains: a property of a genetic variant of gamma-A2 globulins. Proc Natl Acad Sci U S A. 1970 Mar;65(3):557–563. doi: 10.1073/pnas.65.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Köhler G., Potash M. J., Lehrach H., Shulman M. J. Deletions in immunoglobulin mu chains. EMBO J. 1982;1(5):555–563. doi: 10.1002/j.1460-2075.1982.tb01208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lodish H. F., Kong N., Snider M., Strous G. J. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983 Jul 7;304(5921):80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
  18. Morrison S. L. Murine heavy chain disease. Eur J Immunol. 1978 Mar;8(3):194–199. doi: 10.1002/eji.1830080311. [DOI] [PubMed] [Google Scholar]
  19. Morrison S. L., Scharff M. D. Heavy chain-producing variants of a mouse myeloma cell line. J Immunol. 1975 Feb;114(2 Pt 1):655–659. [PubMed] [Google Scholar]
  20. Morrison S. L. Sequentially derived mutants of the constant region of the heavy chain of murine immunoglobulins. J Immunol. 1979 Aug;123(2):793–800. [PubMed] [Google Scholar]
  21. Scharff M. D. The synthesis, assembly, and secretion of immunoglobulin: a biochemical and genetic approach. Harvey Lect. 1973;(69):125–142. [PubMed] [Google Scholar]
  22. Seligmann M., Mihaesco E., Preud'homme J. L., Danon F., Brouet J. C. Heavy chain diseases: current findings and concepts. Immunol Rev. 1979;48:145–167. doi: 10.1111/j.1600-065x.1979.tb00302.x. [DOI] [PubMed] [Google Scholar]
  23. Springer T. A., Bhattacharya A., Cardoza J. T., Sanchez-Madrid F. Monoclonal antibodies specific for rat IgG1, IgG2a, and IgG2b subclasses, and kappa chain monotypic and allotypic determinants: reagents for use with rat monoclonal antibodies. Hybridoma. 1982;1(3):257–273. doi: 10.1089/hyb.1.1982.1.257. [DOI] [PubMed] [Google Scholar]
  24. Tartakoff A., Vassalli P. Plasma cell immunoglobulin M molecules. Their biosynthesis, assembly, and intracellular transport. J Cell Biol. 1979 Nov;83(2 Pt 1):284–299. doi: 10.1083/jcb.83.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thorens B., Schulz M. F., Vassalli P. Bone marrow pre-B lymphocytes synthesize immunoglobulin mu chains of membrane type with different properties and intracellular pathways. EMBO J. 1985 Feb;4(2):361–368. doi: 10.1002/j.1460-2075.1985.tb03637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Trimble W. S., Baker M. D., Boulianne G. L., Murialdo H., Hozumi N., Shulman M. J. Analysis of hybridoma mutants defective in synthesis of immunoglobulin M. Somat Cell Mol Genet. 1986 Sep;12(5):467–477. doi: 10.1007/BF01539918. [DOI] [PubMed] [Google Scholar]
  27. Yelton D. E., Scharff M. D. Mutant monoclonal antibodies with alterations in biological functions. J Exp Med. 1982 Oct 1;156(4):1131–1148. doi: 10.1084/jem.156.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zack D. J., Morrison S. L., Cook W. D., Dackowski W., Scharff M. D. Somatically generated mouse myeloma variants synthesizing IgA half-molecules. J Exp Med. 1981 Nov 1;154(5):1554–1569. doi: 10.1084/jem.154.5.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES