Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Mar 1;104(3):671–678. doi: 10.1083/jcb.104.3.671

Analyses of the interactions between retinoid-binding proteins and embryonal carcinoma cells

PMCID: PMC2114540  PMID: 3029143

Abstract

[3H]Retinoic acid (RA) and [3H]retinol bind in an unsaturable manner to isolated nuclei from Nulli-SCC1 and PCC4.aza1R embryonal carcinoma (EC) cells. When nuclei are challenged with the same labeled retinoids on their respective binding proteins (CRABP and CRBP), much less binding is observed and the binding is saturable. RA-CRABP does not compete with [3H]retinol-CRBP for binding to specific Nulli-SCC1 nuclear sites, whereas retinol-CRBP (but not apo-CRBP) actually potentiates the binding of [3H]RA-CRABP to these nuclei. The binding of [3H]RA-CRABP and [3H]retinol-CRBP is not dramatically affected by prior removal of the outer nuclear membrane with Triton X-100. However, treatment with the detergent after the binding reaction is complete removes about half of the bound [3H]RA-CRABP and almost all of the bound [3H]retinol-CRBP. We measured specific retinoid-binding activities in nucleoplasmic extracts of Nulli-SCC1 and PCC4.aza1R cells. The only readily detectable specific binding activity in nucleoplasmic extracts from untreated cells was for [3H]retinol in PCC4.aza1R preparations. Nucleoplasmic extracts from Nulli-SCC1 and PCC4.aza1R cells pretreated with RA had considerable levels of specific [3H]RA-binding activity with little or no increase in [3H]retinol binding. By contrast, similar extracts from Nulli-SCC1 cells treated with retinol bound large amounts of both [3H]retinol and [3H]RA. Under the same conditions, PCC4.aza1R extracts also contained [3H]RA-binding activity with no increase in [3H]retinol binding above the high endogenous levels. Although these results might reflect translocation of binding proteins from cytoplasm to nucleus, other interpretations must be considered since we often observed an increase, rather than the expected reduction, in cytoplasmic retinoid-binding protein levels.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi N., Smith J. E., Sklan D., Goodman D. S. Radioimmunoassay studies of the tissue distribution and subcellular localization of cellular retinol-binding protein in rats. J Biol Chem. 1981 Sep 25;256(18):9471–9476. [PubMed] [Google Scholar]
  2. Barkai U., Sherizly I., Kraicer P. F. A rapid assay for progesterone receptors in rat uterine cytosol: technique, changes at induction of decidualization. J Steroid Biochem. 1981 Aug;14(8):713–720. doi: 10.1016/0022-4731(81)90006-6. [DOI] [PubMed] [Google Scholar]
  3. Bok D., Ong D. E., Chytil F. Immunocytochemical localization of cellular retinol binding protein in the rat retina. Invest Ophthalmol Vis Sci. 1984 Aug;25(8):877–883. [PubMed] [Google Scholar]
  4. Cham B. E., Knowles B. R. A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res. 1976 Mar;17(2):176–181. [PubMed] [Google Scholar]
  5. Cope F. O., Knox K. L., Hall R. C., Jr Rat testes interstitial cell nuclei exhibit three distinct receptors for retinoic acid. Experientia. 1984 Mar 15;40(3):276–277. doi: 10.1007/BF01947580. [DOI] [PubMed] [Google Scholar]
  6. Douer D., Koeffler H. P. Retinoic acid. Inhibition of the clonal growth of human myeloid leukemia cells. J Clin Invest. 1982 Feb;69(2):277–283. doi: 10.1172/JCI110450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eglitis M. A., Sherman M. I. Murine embryonal carcinoma cells differentiate in vitro in response to retinol. Exp Cell Res. 1983 Jul;146(2):289–296. doi: 10.1016/0014-4827(83)90131-3. [DOI] [PubMed] [Google Scholar]
  8. Eriksson U., Das K., Busch C., Nordlinder H., Rask L., Sundelin J., Sällström J., Peterson P. A. Cellular retinol-binding protein. Quantitation and distribution. J Biol Chem. 1984 Nov 10;259(21):13464–13470. [PubMed] [Google Scholar]
  9. Gubler M. L., Sherman M. I. Metabolism of retinoids by embryonal carcinoma cells. J Biol Chem. 1985 Aug 15;260(17):9552–9558. [PubMed] [Google Scholar]
  10. Jetten A. M., De Luca L. M. Induction of differentiation of embryonal carcinoma cells by retinol: possible mechanisms. Biochem Biophys Res Commun. 1983 Jul 29;114(2):593–599. doi: 10.1016/0006-291x(83)90821-5. [DOI] [PubMed] [Google Scholar]
  11. Jetten A. M., Jetten M. E. Possible role of retinoic acid binding protein in retinoid stimulation of embryonal carcinoma cell differentiation. Nature. 1979 Mar 8;278(5700):180–182. doi: 10.1038/278180a0. [DOI] [PubMed] [Google Scholar]
  12. Jetten A. M., Jetten M. E., Sherman M. I. Stimulation of differentiation of several murine embryonal carcinoma cell lines by retinoic acid. Exp Cell Res. 1979 Dec;124(2):381–391. doi: 10.1016/0014-4827(79)90213-1. [DOI] [PubMed] [Google Scholar]
  13. Knowler J. T., Moses H. L., Spelsberg T. C. Comparison and characterization of nuclear isolation procedures as applied to chick oviduct. J Cell Biol. 1973 Dec;59(3):685–695. doi: 10.1083/jcb.59.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liau G., Ong D. E., Chytil F. Interaction of the retinol/cellular retinol-binding protein complex with isolated nuclei and nuclear components. J Cell Biol. 1981 Oct;91(1):63–68. doi: 10.1083/jcb.91.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liau G., Ong D. E., Chytil F. Partial characterization of nuclear binding sites for retinol delivered by cellular retinol binding protein. Arch Biochem Biophys. 1985 Mar;237(2):354–360. doi: 10.1016/0003-9861(85)90287-5. [DOI] [PubMed] [Google Scholar]
  16. Matthaei K. I., McCue P. A., Sherman M. I. Retinoid binding protein activities in murine embryonal carcinoma cells and their differentiated derivatives. Cancer Res. 1983 Jun;43(6):2862–2867. [PubMed] [Google Scholar]
  17. McCue P. A., Gubler M. L., Maffei L., Sherman M. I. Complementation analyses of differentiation-defective embryonal carcinoma cells. Dev Biol. 1984 Jun;103(2):399–408. doi: 10.1016/0012-1606(84)90327-0. [DOI] [PubMed] [Google Scholar]
  18. McCue P. A., Gubler M. L., Sherman M. I., Cohen B. N. Sodium butyrate induces histone hyperacetylation and differentiation of murine embryonal carcinoma cells. J Cell Biol. 1984 Feb;98(2):602–608. doi: 10.1083/jcb.98.2.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCue P. A., Matthaei K. I., Taketo M., Sherman M. I. Differentiation-defective mutants of mouse embryonal carcinoma cells: response to hexamethylenebisacetamide and retinoic acid. Dev Biol. 1983 Apr;96(2):416–426. doi: 10.1016/0012-1606(83)90179-3. [DOI] [PubMed] [Google Scholar]
  20. Mehta R. G., Cerny W. L., Moon R. C. Nuclear interactions of retinoic acid-binding protein in chemically induced mammary adenocarcinoma. Biochem J. 1982 Dec 15;208(3):731–736. doi: 10.1042/bj2080731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ong D. E., Crow J. A., Chytil F. Radioimmunochemical determination of cellular retinol- and cellular retinoic acid-binding proteins in cytosols of rat tissues. J Biol Chem. 1982 Nov 25;257(22):13385–13389. [PubMed] [Google Scholar]
  22. Ong D., Chytil F. Purification of cellular retinol and retinoic acid-binding proteins from rat tissue. Methods Enzymol. 1980;67:288–296. doi: 10.1016/s0076-6879(80)67036-0. [DOI] [PubMed] [Google Scholar]
  23. Schindler J., Matthaei K. I., Sherman M. I. Isolation and characterization of mouse mutant embryonal carcinoma cells which fail to differentiate in response to retinoic acid. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1077–1080. doi: 10.1073/pnas.78.2.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sherman M. I., Gubler M. L., Barkai U., Harper M. I., Coppola G., Yuan J. Role of retinoids in differentiation and growth of embryonal carcinoma cells. Ciba Found Symp. 1985;113:42–60. doi: 10.1002/9780470720943.ch4. [DOI] [PubMed] [Google Scholar]
  25. Sherman M. I., Paternoster M. L., Taketo M. Effects of arotinoids upon murine embryonal carcinoma cells. Cancer Res. 1983 Sep;43(9):4283–4290. [PubMed] [Google Scholar]
  26. Takase S., Ong D. E., Chytil F. Cellular retinol-binding protein allows specific interaction of retinol with the nucleus in vitro. Proc Natl Acad Sci U S A. 1979 May;76(5):2204–2208. doi: 10.1073/pnas.76.5.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takase S., Ong D. E., Chytil F. Transfer of retinoic acid from its complex with cellular retinoic acid-binding protein to the nucleus. Arch Biochem Biophys. 1986 Jun;247(2):328–334. doi: 10.1016/0003-9861(86)90591-6. [DOI] [PubMed] [Google Scholar]
  28. Takase S., Ong D. E., Chytil F. Transfer of retinoic acid from its complex with cellular retinoic acid-binding protein to the nucleus. Arch Biochem Biophys. 1986 Jun;247(2):328–334. doi: 10.1016/0003-9861(86)90591-6. [DOI] [PubMed] [Google Scholar]
  29. Wang S. Y., Gudas L. J. Selection and characterization of F9 teratocarcinoma stem cell mutants with altered responses to retinoic acid. J Biol Chem. 1984 May 10;259(9):5899–5906. [PubMed] [Google Scholar]
  30. Wiggert B., Russell P., Lewis M., Chader G. Differential binding to soluble nuclear receptors and effects on cell viability of retinol and retinoic acid in cultured retinoblastoma cells. Biochem Biophys Res Commun. 1977 Nov 7;79(1):218–225. doi: 10.1016/0006-291x(77)90083-3. [DOI] [PubMed] [Google Scholar]
  31. Williams J. B., Napoli J. L. Metabolism of retinoic acid and retinol during differentiation of F9 embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4658–4662. doi: 10.1073/pnas.82.14.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES