Abstract
A new connective tissue protein, which we call fibrillin, has been isolated from the medium of human fibroblast cell cultures. Electrophoresis of the disulfide bond-reduced protein gave a single band with an estimated molecular mass of 350,000 D. This 350-kD protein appeared to possess intrachain disulfide bonds. It could be stained with periodic acid-Schiff reagent, and after metabolic labeling, it contained [3H]glucosamine. It could not be labeled with [35S]sulfate. It was resistant to digestion by bacterial collagenase. Using mAbs specific for fibrillin, we demonstrated its widespread distribution in the connective tissue matrices of skin, lung, kidney, vasculature, cartilage, tendon, muscle, cornea, and ciliary zonule. Electron microscopic immunolocalization with colloidal gold conjugates specified its location to a class of extracellular structural elements described as microfibrils. These microfibrils possessed a characteristic appearance and averaged 10 nm in diameter. Microfibrils around the amorphous cores of the elastic fiber system as well as bundles of microfibrils without elastin cores were labeled equally well with antibody. Immunolocalization suggested that fibrillin is arrayed periodically along the individual microfibril and that individual microfibrils may be aligned within bundles. The periodicity of the epitope appeared to match the interstitial collagen band periodicity. In contrast, type VI collagen, which has been proposed as a possible microfibrillar component, was immunolocalized with a specific mAb to small diameter microfilaments that interweave among the large, banded collagen fibers; it was not associated with the system of microfibrils identified by the presence of fibrillin.
Full Text
The Full Text of this article is available as a PDF (6.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bentz H., Morris N. P., Murray L. W., Sakai L. Y., Hollister D. W., Burgeson R. E. Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3168–3172. doi: 10.1073/pnas.80.11.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruns R. R. Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastruct Res. 1984 Nov;89(2):136–145. doi: 10.1016/s0022-5320(84)80010-6. [DOI] [PubMed] [Google Scholar]
- Bruns R. R., Press W., Engvall E., Timpl R., Gross J. Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol. 1986 Aug;103(2):393–404. doi: 10.1083/jcb.103.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleary E. G., Gibson M. A. Elastin-associated microfibrils and microfibrillar proteins. Int Rev Connect Tissue Res. 1983;10:97–209. doi: 10.1016/b978-0-12-363710-9.50009-5. [DOI] [PubMed] [Google Scholar]
- Cotta-Pereira G., Guerra Rodrigo F., Bittencourt-Sampaio S. Oxytalan, elaunin, and elastic fibers in the human skin. J Invest Dermatol. 1976 Mar;66(3):143–148. doi: 10.1111/1523-1747.ep12481882. [DOI] [PubMed] [Google Scholar]
- Engvall E., Hessle H., Klier G. Molecular assembly, secretion, and matrix deposition of type VI collagen. J Cell Biol. 1986 Mar;102(3):703–710. doi: 10.1083/jcb.102.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engvall E., Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972 Jul;109(1):129–135. [PubMed] [Google Scholar]
- FARQUHAR M. G., WISSIG S. L., PALADE G. E. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med. 1961 Jan 1;113:47–66. doi: 10.1084/jem.113.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frederickson R. G., Low F. N. The fine structure of perinotochordal microfibrils in control and enzyme-treated chick embryos. Am J Anat. 1971 Mar;130(3):347–375. doi: 10.1002/aja.1001300307. [DOI] [PubMed] [Google Scholar]
- Furthmayr H., Wiedemann H., Timpl R., Odermatt E., Engel J. Electron-microscopical approach to a structural model of intima collagen. Biochem J. 1983 May 1;211(2):303–311. doi: 10.1042/bj2110303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson M. A., Cleary E. G. A collagen-like glycoprotein from elastin-rich tissues. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1288–1295. doi: 10.1016/0006-291x(82)90926-3. [DOI] [PubMed] [Google Scholar]
- Gibson M. A., Cleary E. G. CL glycoprotein is the tissue form of type VI collagen. J Biol Chem. 1985 Sep 15;260(20):11149–11159. [PubMed] [Google Scholar]
- Gibson M. A., Cleary E. G. Distribution of CL glycoprotein in tissues: an immunohistochemical study. Coll Relat Res. 1983 Nov;3(6):469–488. doi: 10.1016/s0174-173x(83)80027-2. [DOI] [PubMed] [Google Scholar]
- Goldfischer S., Coltoff-Schiller B., Goldfischer M. Microfibrils, elastic anchoring components of the extracellular matrix, are associated with fibronectin in the zonule of Zinn and aorta. Tissue Cell. 1985;17(4):441–450. doi: 10.1016/0040-8166(85)90023-0. [DOI] [PubMed] [Google Scholar]
- Hessle H., Engvall E. Type VI collagen. Studies on its localization, structure, and biosynthetic form with monoclonal antibodies. J Biol Chem. 1984 Mar 25;259(6):3955–3961. [PubMed] [Google Scholar]
- Jander R., Troyer D., Rauterberg J. A collagen-like glycoprotein of the extracellular matrix is the undegraded form of type VI collagen. Biochemistry. 1984 Jul 31;23(16):3675–3681. doi: 10.1021/bi00311a016. [DOI] [PubMed] [Google Scholar]
- Kewley M. A., Steven F. S., Williams G. Preparation of a specific antiserum towards the microfibrillar protein of elastic tissues. Immunology. 1977 Apr;32(4):483–489. [PMC free article] [PubMed] [Google Scholar]
- Knight K. R., Ayad S., Shuttleworth C. A., Grant M. E. A collagenous glycoprotein found in dissociative extracts of foetal bovine nuchal ligament. Evidence for a relationship with type VI collagen. Biochem J. 1984 Jun 1;220(2):395–403. doi: 10.1042/bj2200395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOW F. N. Microfibrils: fine filamentous components of the tissue space. Anat Rec. 1962 Feb;142:131–137. doi: 10.1002/ar.1091420205. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mayer B. W., Jr, Hay E. D., Hynes R. O. Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa. Dev Biol. 1981 Mar;82(2):267–286. doi: 10.1016/0012-1606(81)90451-6. [DOI] [PubMed] [Google Scholar]
- Pratt B. M., Madri J. A. Immunolocalization of type IV collagen and laminin in nonbasement membrane structures of murine corneal stroma. A light and electron microscopic study. Lab Invest. 1985 Jun;52(6):650–656. [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raviola G. The fine structure of the ciliary zonule and ciliary epithelium. With special regard to the organization and insertion of the zonular fibrils. Invest Ophthalmol. 1971 Nov;10(11):851–869. [PubMed] [Google Scholar]
- Ross R., Bornstein P. The elastic fiber. I. The separation and partial characterization of its macromolecular components. J Cell Biol. 1969 Feb;40(2):366–381. doi: 10.1083/jcb.40.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai L. Y., Engvall E., Hollister D. W., Burgeson R. E. Production and characterization of a monoclonal antibody to human Type IV collagen. Am J Pathol. 1982 Sep;108(3):310–318. [PMC free article] [PubMed] [Google Scholar]
- Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986 Oct;103(4):1577–1586. doi: 10.1083/jcb.103.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz E., Goldfischer S., Coltoff-Schiller B., Blumenfeld O. O. Extracellular matrix microfibrils are composed of core proteins coated with fibronectin. J Histochem Cytochem. 1985 Apr;33(4):268–274. doi: 10.1177/33.4.3980980. [DOI] [PubMed] [Google Scholar]
- Sear C. H., Grant M. E., Jackson D. S. The nature of the microfibrillar glycoproteins of elastic fibres. A biosynthetic study. Biochem J. 1981 Feb 15;194(2):587–598. doi: 10.1042/bj1940587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sear C. H., Kewley M. A., Jones C. J., Grant M. E., Jackson D. S. The identification of glycoproteins associated with elastic-tissue microfibrils. Biochem J. 1978 Mar 15;170(3):715–718. doi: 10.1042/bj1700715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streeten B. W., Licari P. A. The zonules and the elastic microfibrillar system in the ciliary body. Invest Ophthalmol Vis Sci. 1983 Jun;24(6):667–681. [PubMed] [Google Scholar]
- Timpl R., Wiedemann H., van Delden V., Furthmayr H., Kühn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981 Nov;120(2):203–211. doi: 10.1111/j.1432-1033.1981.tb05690.x. [DOI] [PubMed] [Google Scholar]
- Tsuji T. Elastic fibres in the dermal papilla. Scanning and transmission electron microscopic studies. Br J Dermatol. 1980 Apr;102(4):413–417. doi: 10.1111/j.1365-2133.1980.tb06554.x. [DOI] [PubMed] [Google Scholar]
- Yurchenco P. D., Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry. 1984 Apr 10;23(8):1839–1850. doi: 10.1021/bi00303a040. [DOI] [PubMed] [Google Scholar]
- von der Mark H., Aumailley M., Wick G., Fleischmajer R., Timpl R. Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem. 1984 Aug 1;142(3):493–502. doi: 10.1111/j.1432-1033.1984.tb08313.x. [DOI] [PubMed] [Google Scholar]