Abstract
Freeze-etch preparation of the laminated bundles of microtubules in motile axostyles demonstrates that the cross-bridges populating individual layers or laminae are structurally similar to the dynein arms of cilia and flagellae. Also, like dynein, they are extracted by high salt and undergo a change in tilt upon removal of endogenous ATP (while the axostyle as a whole straightens and becomes stiff). On the other hand, the bridges running between adjacent microtubule laminae in the axostyle turn out to be much more delicate and wispy in appearance, and display no similarity to dynein arms. Thus we propose that the internal or "intra-laminar" cross-bridges are the active force- generating ATPases in this system, and that they generate overall bends or changes in the helical pitch of the axostyle by altering the longitudinal and lateral register of microtubules in each lamina individually; e.g., by "warping" each lamina and creating longitudinal shear forces within it. The cross-links between adjacent laminae, on the other hand, would then simply be force-transmitting elements that serve to translate the shearing forces generated within individual laminae into overall helical shape changes. (This hypothesis differs from the views of earlier workers who considered a more active role for the later cross-links, postulating that they cause an active sliding between adjacent layers that somehow leads to axostyle movement.) Also described here are physical connections between adjacent intra-laminar cross-bridges, structurally analogous to the overlapping components of the outer dynein arms of cilia and flagella. As with dynein, these may represent a mechanism for propagating local changes from cross-bridge to cross-bridge down the axostyle, as occurs during the passage of bends down the length of the organelle.
Full Text
The Full Text of this article is available as a PDF (10.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
- Bloodgood R. A., Miller K. R. Freeze-fracture of microtubules and bridges in motile axostyles. J Cell Biol. 1974 Sep;62(3):660–671. doi: 10.1083/jcb.62.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brugerolle G. Sur l'ultrastructure et la position systématique de Pyrsonympha vertens (Zooflagellata Pyrsonymphina) C R Acad Sci Hebd Seances Acad Sci D. 1970 Feb 16;270(7):966–969. [PubMed] [Google Scholar]
- DeRosier D. J., Tilney L. G., Bonder E. M., Frankl P. A change in twist of actin provides the force for the extension of the acrosomal process in Limulus sperm: the false-discharge reaction. J Cell Biol. 1982 May;93(2):324–337. doi: 10.1083/jcb.93.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeRosier D. J., Tilney L. G. How to build a bend into an actin bundle. J Mol Biol. 1984 May 5;175(1):57–73. doi: 10.1016/0022-2836(84)90445-5. [DOI] [PubMed] [Google Scholar]
- DeRosier D., Tilney L., Flicker P. A change in the twist of the actin-containing filaments occurs during the extension of the acrosomal process in Limulus sperm. J Mol Biol. 1980 Mar 15;137(4):375–389. doi: 10.1016/0022-2836(80)90163-1. [DOI] [PubMed] [Google Scholar]
- Fitzharris T. P., Bloodgood R. A., McIntosh J. R. The effect of fixation on the wave propagation of the protozoan axostyle. Tissue Cell. 1972;4(2):219–225. doi: 10.1016/s0040-8166(72)80043-0. [DOI] [PubMed] [Google Scholar]
- GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Fronk E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):187–196. [PubMed] [Google Scholar]
- Gibbons I. R. Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J Biol Chem. 1966 Dec 10;241(23):5590–5596. [PubMed] [Google Scholar]
- Goodenough U. W., Heuser J. E. Outer and inner dynein arms of cilia and flagella. Cell. 1985 Jun;41(2):341–342. doi: 10.1016/s0092-8674(85)80003-9. [DOI] [PubMed] [Google Scholar]
- Goodenough U. W., Heuser J. E. Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J Cell Biol. 1985 Jun;100(6):2008–2018. doi: 10.1083/jcb.100.6.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodenough U. W., Heuser J. E. Substructure of the outer dynein arm. J Cell Biol. 1982 Dec;95(3):798–815. doi: 10.1083/jcb.95.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodenough U., Heuser J. Structural comparison of purified dynein proteins with in situ dynein arms. J Mol Biol. 1984 Dec 25;180(4):1083–1118. doi: 10.1016/0022-2836(84)90272-9. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Cooke R. Actin-myosin interactions visualized by the quick-freeze, deep-etch replica technique. J Mol Biol. 1983 Sep 5;169(1):97–122. doi: 10.1016/s0022-2836(83)80177-6. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E. Procedure for freeze-drying molecules adsorbed to mica flakes. J Mol Biol. 1983 Sep 5;169(1):155–195. doi: 10.1016/s0022-2836(83)80179-x. [DOI] [PubMed] [Google Scholar]
- Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N. 270K microtubule-associated protein cross-reacting with anti-MAP2 IgG in the crayfish peripheral nerve axon. J Cell Biol. 1986 Jul;103(1):33–39. doi: 10.1083/jcb.103.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ip W., Murphy D. B., Heuser J. E. Arrest of pigment granule motion in erythrophores by quick-freezing. J Ultrastruct Res. 1984 Feb;86(2):162–175. doi: 10.1016/s0022-5320(84)80055-6. [DOI] [PubMed] [Google Scholar]
- Langford G. M., Inoué S. Motility of the microtubular axostyle in Pyrsonympha. J Cell Biol. 1979 Mar;80(3):521–538. doi: 10.1083/jcb.80.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh J. R., Ogata E. S., Landis S. C. The axostyle of Saccinobaculus. I. Structure of the organism and its microtubule bundle. J Cell Biol. 1973 Feb;56(2):304–323. doi: 10.1083/jcb.56.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh J. R. The axostyle of Saccinobaculus. II. Motion of the microtubule bundle and a structural comparison of straight and bent axostyles. J Cell Biol. 1973 Feb;56(2):324–339. doi: 10.1083/jcb.56.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Tilney L. G. Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. J Cell Biol. 1973 Jan;56(1):13–26. doi: 10.1083/jcb.56.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ritter H., Jr A fluid system for the cultivation, light microscope examination and manipulation of obligate anaerobes. J Protozool. 1974 Oct;21(4):565–568. doi: 10.1111/j.1550-7408.1974.tb03700.x. [DOI] [PubMed] [Google Scholar]
- Ritter H., Jr, Inoué S., Kubai D. Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement. J Cell Biol. 1978 Jun;77(3):638–654. doi: 10.1083/jcb.77.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith H. E., Arnott H. J. Axostyle structure in the termite protozoon Pyrsonympha vertens. Tissue Cell. 1974;6(2):193–207. doi: 10.1016/0040-8166(74)90047-0. [DOI] [PubMed] [Google Scholar]
- Souto-Padrón T., de Souza W., Heuser J. E. Quick-freeze, deep-etch rotary replication of Trypanosoma cruzi and Herpetomonas megaseliae. J Cell Sci. 1984 Jul;69:167–178. doi: 10.1242/jcs.69.1.167. [DOI] [PubMed] [Google Scholar]
- Summers K. E., Gibbons I. R. Effects of trypsin digestion on flagellar structures and their relationship to motility. J Cell Biol. 1973 Sep;58(3):618–629. doi: 10.1083/jcb.58.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Usukura J., Ishikawa H. ATP-dependent structural changes of the outer dynein arm in Tetrahymena cilia: a freeze-etch replica study. J Cell Biol. 1983 May;96(5):1480–1485. doi: 10.1083/jcb.96.5.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodrum D. T., Linck R. W. Structural basis of motility in the microtubular axostyle: implications for cytoplasmic microtubule structure and function. J Cell Biol. 1980 Nov;87(2 Pt 1):404–414. doi: 10.1083/jcb.87.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamin M. A., Tamm S. L. ATP reactivation of the rotary axostyle in termite flagellates: effects of dynein ATPase inhibitors. J Cell Biol. 1982 Nov;95(2 Pt 1):589–597. doi: 10.1083/jcb.95.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
