Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Dec 1;103(6):2541–2550. doi: 10.1083/jcb.103.6.2541

Immunogold electron microscopy of phytochrome in Avena: identification of intracellular sites responsible for phytochrome sequestering and enhanced pelletability

PMCID: PMC2114580  PMID: 3536968

Abstract

Using monoclonal antibodies to the plant photoreceptor, phytochrome, we have investigated by immunogold electron microscopy the rapid, red light-induced, intracellular redistribution (termed "sequestering") of phytochrome in dark-grown Avena coleoptiles. Pre-embedding immunolabeling of 5-micron-thick cryosections reveals that sequestered phytochrome is associated with numerous, discrete structures of similar morphology. Specific labeling of these structures was also achieved by post-embedding ("on-grid") immunostaining of LR-White-embedded tissue, regardless of whether the tissue had been fixed chemically or by freeze substitution. The phytochrome-associated structures are globular to oval in shape, 200-400 nm in size, and are composed of amorphous, granular material. No morphologically identifiable membranes are present either surrounding or within these structures, which are often present as apparent aggregates that approach several micrometers in size. An immunogold labeling procedure has also been developed to identify the particulate, subcellular component with which phytochrome is associated in vitro as a consequence of irradiation of Avena coleoptiles before their homogenization. Structures with appearance similar to those identified in situ are the only components of the pelletable material that are specifically labeled with gold. We conclude that the association of phytochrome with these structures in Avena represents the underlying molecular event that ultimately is expressed both as red light-induced sequestering in vivo and enhanced pelletability of phytochrome detected in vitro.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTLER W. L., NORRIS K. H. The spectrophotometry of dense light-scattering material. Arch Biochem Biophys. 1960 Mar;87:31–40. doi: 10.1016/0003-9861(60)90119-3. [DOI] [PubMed] [Google Scholar]
  2. Boeshore M. L., Pratt L. H. Phytochrome Modification and Light-enhanced, In Vivo-induced Phytochrome Pelletability. Plant Physiol. 1980 Sep;66(3):500–504. doi: 10.1104/pp.66.3.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler W. L., Lane H. C., Siegelman H. W. Nonphotochemical Transformations of Phytochrome in Vivo. Plant Physiol. 1963 Sep;38(5):514–519. doi: 10.1104/pp.38.5.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Mey J., Moeremans M., Geuens G., Nuydens R., De Brabander M. High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method. Cell Biol Int Rep. 1981 Sep;5(9):889–899. doi: 10.1016/0309-1651(81)90204-6. [DOI] [PubMed] [Google Scholar]
  5. Mackenzie J. M., Jr, Coleman R. A., Briggs W. R., Pratt L. H. Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc Natl Acad Sci U S A. 1975 Mar;72(3):799–803. doi: 10.1073/pnas.72.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pratt L. H., Marmé D. Red Light-enhanced Phytochrome Pelletability: Re-examination and Further Characterization. Plant Physiol. 1976 Nov;58(5):686–692. doi: 10.1104/pp.58.5.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Quail P. H., Briggs W. R. Irradiation-enhanced Phytochrome Pelletability: Requirement for Phosphorylative Energy in Vivo. Plant Physiol. 1978 Nov;62(5):773–778. doi: 10.1104/pp.62.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Quail P. H., Marmé D., Schäfer E. Particle-bound phytochrome from maize and pumpkin. Nat New Biol. 1973 Oct 10;245(145):189–191. doi: 10.1038/newbio245189a0. [DOI] [PubMed] [Google Scholar]
  9. Verbelen J. P., Pratt L. H., Butler W. L., Tokuyasu K. Localization of phytochrome in oats by electron microscopy. Plant Physiol. 1982 Sep;70(3):867–871. doi: 10.1104/pp.70.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES