Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Dec 1;103(6):2489–2498. doi: 10.1083/jcb.103.6.2489

Evidence for splicing new basement membrane into old during glomerular development in newborn rat kidneys

PMCID: PMC2114591  PMID: 3782306

Abstract

Tannic acid in glutaraldehyde fixatives greatly enhanced the visualization of two developmentally and morphologically distinct stages in glomerular basement membrane (GBM) formation in newborn rat kidneys. First, in early stage glomeruli, double basement membranes between endothelial cells and podocytes were present and, in certain areas, appeared to be fusing. Second, in maturing stage glomeruli, elaborate loops and outpockets of basement membrane projected into epithelial, but not endothelial, sides of capillary walls. When Lowicryl thin sections from newborn rat kidneys were sequentially labeled with rabbit anti-laminin IgG and anti-rabbit IgG-colloidal gold, gold bound across the full width of all GBMs, including double basement membranes and outpockets. The same distribution was obtained when sections from rats that received intravenous injections of rabbit anti-laminin IgG 1 h before fixation were labeled directly with anti- rabbit IgG-colloidal gold. When kidneys were fixed 4 d after anti- laminin IgG injection, however, loops beneath the podocytes in maturing glomeruli were usually unlabeled and lengths of unlabeled GBM were interspersed with labeled lengths. In additional experiments, rabbit anti-laminin IgG was intravenously injected into newborn rats and, 4-14 d later, rats were re-injected with sheep anti-laminin IgG. Sections were then doubly labeled with anti-rabbit and anti-sheep IgG coupled to 10 and 5 nm colloidal gold, respectively. Sheep IgG occurred alone in outpockets of maturing glomeruli and also in lengths of GBM flanked by lengths containing rabbit IgG. These results indicate that, after fusion of double basement membranes, new segments of GBM appear beneath developing podocytes and are subsequently spliced into existing GBM. This splicing provides the additional GBM necessary for expanding glomerular capillaries.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R., Caulfield J. P. Distribution of laminin within rat and mouse renal, splenic, intestinal, and hepatic basement membranes identified after the intravenous injection of heterologous antilaminin IgG. Lab Invest. 1985 Feb;52(2):169–181. [PubMed] [Google Scholar]
  2. Abrahamson D. R., Caulfield J. P. Proteinuria and structural alterations in rat glomerular basement membranes induced by intravenously injected anti-laminin immunoglobulin G. J Exp Med. 1982 Jul 1;156(1):128–145. doi: 10.1084/jem.156.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abrahamson D. R. Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidneys. J Cell Biol. 1985 Jun;100(6):1988–2000. doi: 10.1083/jcb.100.6.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abrahamson D. R. Post-embedding colloidal gold immunolocalization of laminin to the lamina rara interna, lamina densa, and lamina rara externa of renal glomerular basement membranes. J Histochem Cytochem. 1986 Jul;34(7):847–853. doi: 10.1177/34.7.3519749. [DOI] [PubMed] [Google Scholar]
  5. Altman L. G., Schneider B. G., Papermaster D. S. Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy. J Histochem Cytochem. 1984 Nov;32(11):1217–1223. doi: 10.1177/32.11.6436366. [DOI] [PubMed] [Google Scholar]
  6. Aoki A. Development of the human renal glomerulus. I. Differentiation of the filtering membrane. Anat Rec. 1966 Jul;155(3):339–351. doi: 10.1002/ar.1091550307. [DOI] [PubMed] [Google Scholar]
  7. Caulfield J. P., Farquhar M. G. The permeability of glomerular capillaries to graded dextrans. Identification of the basement membrane as the primary filtration barrier. J Cell Biol. 1974 Dec;63(3):883–903. doi: 10.1083/jcb.63.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ekblom P. Formation of basement membranes in the embryonic kidney: an immunohistological study. J Cell Biol. 1981 Oct;91(1):1–10. doi: 10.1083/jcb.91.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  10. Kanwar Y. S. Biophysiology of glomerular filtration and proteinuria. Lab Invest. 1984 Jul;51(1):7–21. [PubMed] [Google Scholar]
  11. Kazimierczak J. A study of scanning (SEM) and transmission (TEM) electron microscopy of the glomerular capillaries in developing rat kidney. Cell Tissue Res. 1980;212(2):241–255. doi: 10.1007/BF00233959. [DOI] [PubMed] [Google Scholar]
  12. Kunz A., Brown D., Orci L. Appearance of Helix pomatia lectin-binding sites on podocyte plasma membrane during glomerular differentiation. A quantitative analysis using the lectin-gold technique. Lab Invest. 1984 Sep;51(3):317–324. [PubMed] [Google Scholar]
  13. Makino H., Gibbons J. T., Reddy M. K., Kanwar Y. S. Nephritogenicity of antibodies to proteoglycans of the glomerular basement membrane--I. J Clin Invest. 1986 Jan;77(1):142–156. doi: 10.1172/JCI112269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsuo S., Brentjens J. R., Andres G., Foidart J. M., Martin G. R., Martinez-Hernandez A. Distribution of basement membrane antigens in glomeruli of mice with autoimmune glomerulonephritis. Am J Pathol. 1986 Jan;122(1):36–49. [PMC free article] [PubMed] [Google Scholar]
  15. Miettinen A., Stow J. L., Mentone S., Farquhar M. G. Antibodies to basement membrane heparan sulfate proteoglycans bind to the laminae rarae of the glomerular basement membrane (GBM) and induce subepithelial GBM thickening. J Exp Med. 1986 May 1;163(5):1064–1084. doi: 10.1084/jem.163.5.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mounier F., Foidart J. M., Gubler M. C. Distribution of extracellular matrix glycoproteins during normal development of human kidney. An immunohistochemical study. Lab Invest. 1986 Apr;54(4):394–401. [PubMed] [Google Scholar]
  17. Nakane P. K., Kawaoi A. Peroxidase-labeled antibody. A new method of conjugation. J Histochem Cytochem. 1974 Dec;22(12):1084–1091. doi: 10.1177/22.12.1084. [DOI] [PubMed] [Google Scholar]
  18. Reeves W. H., Kanwar Y. S., Farquhar M. G. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J Cell Biol. 1980 Jun;85(3):735–753. doi: 10.1083/jcb.85.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reeves W., Caulfield J. P., Farquhar M. G. Differentiation of epithelial foot processes and filtration slits: sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Lab Invest. 1978 Aug;39(2):90–100. [PubMed] [Google Scholar]
  20. Sariola H., Timpl R., von der Mark K., Mayne R., Fitch J. M., Linsenmayer T. F., Ekblom P. Dual origin of glomerular basement membrane. Dev Biol. 1984 Jan;101(1):86–96. doi: 10.1016/0012-1606(84)90119-2. [DOI] [PubMed] [Google Scholar]
  21. Thorning D., Vracko R. Renal glomerular basal lamina scaffold: embryologic development, anatomy, and role in cellular reconstruction of rat glomeruli injured by freezing and thawing. Lab Invest. 1977 Jul;37(1):105–119. [PubMed] [Google Scholar]
  22. Timpl R., Fujiwara S., Dziadek M., Aumailley M., Weber S., Engel J. Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. Ciba Found Symp. 1984;108:25–43. doi: 10.1002/9780470720899.ch3. [DOI] [PubMed] [Google Scholar]
  23. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  24. VERNIER R. L., BIRCH-ANDERSEN A. Studies of the human fetal kidney. I. Development of the glomerulus. J Pediatr. 1962 May;60:754–768. doi: 10.1016/s0022-3476(62)80103-6. [DOI] [PubMed] [Google Scholar]
  25. Woodley D. T., Rao C. N., Hassell J. R., Liotta L. A., Martin G. R., Kleinman H. K. Interactions of basement membrane components. Biochim Biophys Acta. 1983 Dec 27;761(3):278–283. doi: 10.1016/0304-4165(83)90077-6. [DOI] [PubMed] [Google Scholar]
  26. Yurchenco P. D., Tsilibary E. C., Charonis A. S., Furthmayr H. Models for the self-assembly of basement membrane. J Histochem Cytochem. 1986 Jan;34(1):93–102. doi: 10.1177/34.1.3510247. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES