Abstract
The tongue of the adult mouse is covered by a multilayered squamous epithelium which is continuous on the ventral surface, however interrupted on the dorsal surface by many filiform and few fungiform papillae. The filiform papillae themselves are subdivided into an anterior and posterior unit exhibiting different forms of keratinization. Thus, the entire epithelium shows a pronounced morphological diversity of well recognizable tissue units. We have used a highly sensitive in situ hybridization technique to investigate the differential expression of keratin mRNAs in the tongue epithelium. The hybridization probes used were cDNA restriction fragments complementary to the most specific 3'-regions of any given keratin mRNA. We could show that independent of the morphologically different tongue regions, all basal cells uniformly express the mRNA of a type I 52-kD keratin, typical also for basal cells of the epidermis. Immediately above the homogenous basal layer a vertically oriented specialization of the keratin expression occurs within the morphological tissue units. Thus the dorsal interpapillary and ventral epithelium express the mRNAs of a type II 57-kD and a type I 47-kD keratin pair. In contrast, in the anterior unit of the filiform papillae, only the 47-kD mRNA is present, indicating that this keratin may be coexpressed in tongue epithelium with different type II partners. In suprabasal cells of both, the fungiform papillae and the posterior unit of the filiform papillae, a mRNA of a type I 59-kD keratin could be detected; however, its type II 67-kD epidermal counterpart seems not to be present in these cells. Most surprisingly, in distinct cells of both types of papillae, a type I 50-kD keratin mRNA could be localized which usually is associated with epidermal hyperproliferation. In conclusion, the in situ hybridization technique applied has been proved to be a powerful method for detailed studies of differentiation processes, especially in morphologically complex epithelia.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banks-Schlegel S. P. Keratin alterations during embryonic epidermal differentiation: a presage of adult epidermal maturation. J Cell Biol. 1982 Jun;93(3):551–559. doi: 10.1083/jcb.93.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Banks-Schlegel S. P., Schlegel R., Pinkus G. S. Keratin protein domains within the human epidermis. Exp Cell Res. 1981 Dec;136(2):465–469. doi: 10.1016/0014-4827(81)90028-8. [DOI] [PubMed] [Google Scholar]
 - Bowden P. E., Quinlan R. A., Breitkreutz D., Fusenig N. E. Proteolytic modification of acidic and basic keratins during terminal differentiation of mouse and human epidermis. Eur J Biochem. 1984 Jul 2;142(1):29–36. doi: 10.1111/j.1432-1033.1984.tb08246.x. [DOI] [PubMed] [Google Scholar]
 - Franke W. W., Schmid E., Schiller D. L., Winter S., Jarasch E. D., Moll R., Denk H., Jackson B. W., Illmensee K. Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):431–453. doi: 10.1101/sqb.1982.046.01.041. [DOI] [PubMed] [Google Scholar]
 - Fuchs E., Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980 Apr;19(4):1033–1042. doi: 10.1016/0092-8674(80)90094-x. [DOI] [PubMed] [Google Scholar]
 - Hatzfeld M., Franke W. W. Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol. 1985 Nov;101(5 Pt 1):1826–1841. doi: 10.1083/jcb.101.5.1826. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Hayashi M., Ninomiya Y., Parsons J., Hayashi K., Olsen B. R., Trelstad R. L. Differential localization of mRNAs of collagen types I and II in chick fibroblasts, chondrocytes, and corneal cells by in situ hybridization using cDNA probes. J Cell Biol. 1986 Jun;102(6):2302–2309. doi: 10.1083/jcb.102.6.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Hume W. J., Potten C. S. Changes in proliferative activity as cells move along undulating basement membranes in stratified squamous epithelium. Br J Dermatol. 1980 Nov;103(5):499–504. doi: 10.1111/j.1365-2133.1980.tb01664.x. [DOI] [PubMed] [Google Scholar]
 - Hume W. J., Potten C. S. Proliferative units in stratified squamous epithelium. Clin Exp Dermatol. 1983 Jan;8(1):95–106. doi: 10.1111/j.1365-2230.1983.tb01749.x. [DOI] [PubMed] [Google Scholar]
 - Knapp B., Rentrop M., Schweizer J., Winter H. Nonepidermal members of the keratin multigene family: cDNA sequences and in situ localization of the mRNAs. Nucleic Acids Res. 1986 Jan 24;14(2):751–763. doi: 10.1093/nar/14.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Krieg T. M., Schafer M. P., Cheng C. K., Filpula D., Flaherty P., Steinert P. M., Roop D. R. Organization of a type I keratin gene. Evidence for evolution of intermediate filaments from a common ancestral gene. J Biol Chem. 1985 May 25;260(10):5867–5870. [PubMed] [Google Scholar]
 - Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
 - O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
 - Rentrop M., Knapp B., Winter H., Schweizer J. Aminoalkylsilane-treated glass slides as support for in situ hybridization of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochem J. 1986 May;18(5):271–276. doi: 10.1007/BF01676237. [DOI] [PubMed] [Google Scholar]
 - Schweizer J., Kinjo M., Fürstenberger G., Winter H. Sequential expression of mRNA-encoded keratin sets in neonatal mouse epidermis: basal cells with properties of terminally differentiating cells. Cell. 1984 May;37(1):159–170. doi: 10.1016/0092-8674(84)90311-8. [DOI] [PubMed] [Google Scholar]
 - Schweizer J., Marks F. A developmental study of the distribution and frequency of Langerhans cells in relation to formation of patterning in mouse tail epidermis. J Invest Dermatol. 1977 Aug;69(2):198–204. doi: 10.1111/1523-1747.ep12506298. [DOI] [PubMed] [Google Scholar]
 - Schweizer J., Winter H. Changes in regional keratin polypeptide patterns during phorbol ester-mediated reversible and permanently sustained hyperplasia of mouse epidermis. Cancer Res. 1982 Apr;42(4):1517–1529. [PubMed] [Google Scholar]
 - Schweizer J., Winter H. Keratin biosynthesis in normal mouse epithelia and in squamous cell carcinomas. mRNA-dependent alterations of the primary structure of distinct keratin subunits in tumors. J Biol Chem. 1983 Nov 10;258(21):13268–13272. [PubMed] [Google Scholar]
 - Schweizer J., Winter H. Keratin polypeptide analysis in fetal and in terminally differentiating newborn mouse epidermis. Differentiation. 1982;22(1):19–24. doi: 10.1111/j.1432-0436.1982.tb01219.x. [DOI] [PubMed] [Google Scholar]
 - Skerrow D., Skerrow C. J. Tonofilament differentiation in human epidermis, isolation and polypeptide chain composition of keratinocyte subpopulations. Exp Cell Res. 1983 Jan;143(1):27–35. doi: 10.1016/0014-4827(83)90105-2. [DOI] [PubMed] [Google Scholar]
 - Steinert P. M., Steven A. C., Roop D. R. The molecular biology of intermediate filaments. Cell. 1985 Sep;42(2):411–420. doi: 10.1016/0092-8674(85)90098-4. [DOI] [PubMed] [Google Scholar]
 - Sun T. T., Eichner R., Nelson W. G., Tseng S. C., Weiss R. A., Jarvinen M., Woodcock-Mitchell J. Keratin classes: molecular markers for different types of epithelial differentiation. J Invest Dermatol. 1983 Jul;81(1 Suppl):109s–115s. doi: 10.1111/1523-1747.ep12540831. [DOI] [PubMed] [Google Scholar]
 - Weiss R. A., Eichner R., Sun T. T. Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol. 1984 Apr;98(4):1397–1406. doi: 10.1083/jcb.98.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Winter H., Schweizer J., Goerttler K. Keratins as markers of malignancy in mouse epidermal tumors. Carcinogenesis. 1980 May;1(5):391–398. doi: 10.1093/carcin/1.5.391. [DOI] [PubMed] [Google Scholar]
 - Winter H., Schweizer J. Keratin synthesis in normal mouse epithelia and in squamous cell carcinomas: evidence in tumors for masked mRNA species coding for high molecular weight keratin polypeptides. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6480–6484. doi: 10.1073/pnas.80.21.6480. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Yaffe D., Nudel U., Mayer Y., Neuman S. Highly conserved sequences in the 3' untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res. 1985 May 24;13(10):3723–3737. doi: 10.1093/nar/13.10.3723. [DOI] [PMC free article] [PubMed] [Google Scholar]
 
