Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Dec 1;103(6):2153–2161. doi: 10.1083/jcb.103.6.2153

Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures

PMCID: PMC2114599  PMID: 3782294

Abstract

The expression of neonatal myosin heavy chain (MHC) was examined in developing embryonic chicken muscle cultures using a monoclonal antibody (2E9) that has been shown to be specific for that isoform (Bandman, E., 1985, Science (Wash. DC), 227: 780-782). After 1 wk in vitro some myotubes could be stained with the antibody, and the number of cells that reacted with 2E9 increased with time in culture. All myotubes always stained with a second monoclonal antibody that reacted with all MHC isoforms (AG19) or with a third monoclonal antibody that reacted with the embryonic but not the neonatal MHC (EB165). Quantitation by ELISA of an extract from 2-wk cultures demonstrated that the neonatal MHC represented between 10 and 15% of the total myosin. The appearance of the neonatal isoform was inhibited by switching young cultures to medium with a higher [K+] which has been shown to block spontaneous contractions of myotubes in culture. Furthermore, if mature cultures that reacted with the neonatal antibody were placed into high [K+] medium, neonatal MHC disappeared from virtually all myotubes within 3 d. The effect of high [K+] medium was reversible. When cultures maintained in high [K+] medium for 2 wk were placed in standard medium, which permitted the resumption of contractile activity, within 24 h cells began to react with the neonatal specific antibody, and by 72 h many myotubes were strongly positive. Since similar results were also obtained by inhibiting spontaneous contractions with tetrodotoxin, we suggest that the development of contractile activity is not only associated with the maturation of myotubes in culture, but may also be the signal that induces the expression of the neonatal MHC.

Full Text

The Full Text of this article is available as a PDF (8.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader D., Masaki T., Fischman D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol. 1982 Dec;95(3):763–770. doi: 10.1083/jcb.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandman E. Continued expression of neonatal myosin heavy chain in adult dystrophic skeletal muscle. Science. 1985 Feb 15;227(4688):780–782. doi: 10.1126/science.3969567. [DOI] [PubMed] [Google Scholar]
  3. Bandman E., Matsuda R., Micou-Eastwood J., Strohman R. In vitro translation of RNA from embryonic and from adult chicken pectoralis muscle produces different myosin heavy chains. FEBS Lett. 1981 Dec 28;136(2):301–305. doi: 10.1016/0014-5793(81)80640-0. [DOI] [PubMed] [Google Scholar]
  4. Bandman E., Matsuda R., Strohman R. C. Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev Biol. 1982 Oct;93(2):508–518. doi: 10.1016/0012-1606(82)90138-5. [DOI] [PubMed] [Google Scholar]
  5. Bandman E., Matsuda R., Strohman R. C. Myosin heavy chains from two different adult fast-twitch muscles have different peptide maps but identical mRNAs. Cell. 1982 Jun;29(2):645–650. doi: 10.1016/0092-8674(82)90180-5. [DOI] [PubMed] [Google Scholar]
  6. Bandman E. Myosin components of the latissimus dorsi and the pectoralis major muscles in the dystrophic chicken. Muscle Nerve. 1984 May;7(4):312–326. doi: 10.1002/mus.880070410. [DOI] [PubMed] [Google Scholar]
  7. Bandman E. Myosin isoenzyme transitions in muscle development, maturation, and disease. Int Rev Cytol. 1985;97:97–131. doi: 10.1016/s0074-7696(08)62349-9. [DOI] [PubMed] [Google Scholar]
  8. Bandman E., Strohman R. C. Increased K+ inhibits spontaneous contractions reduces myosin accumulation in cultured chick myotubes. J Cell Biol. 1982 Jun;93(3):698–704. doi: 10.1083/jcb.93.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brevet A., Pinto E., Peacock J., Stockdale F. E. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures. Science. 1976 Sep 17;193(4258):1152–1154. doi: 10.1126/science.959833. [DOI] [PubMed] [Google Scholar]
  10. Brown W. E., Salmons S., Whalen R. G. The sequential replacement of myosin subunit isoforms during muscle type transformation induced by long term electrical stimulation. J Biol Chem. 1983 Dec 10;258(23):14686–14692. [PubMed] [Google Scholar]
  11. Butler-Browne G. S., Bugaisky L. B., Cuénoud S., Schwartz K., Whalen R. G. Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature. 1982 Oct 28;299(5886):830–833. doi: 10.1038/299830a0. [DOI] [PubMed] [Google Scholar]
  12. Butler-Browne G. S., Herlicoviez D., Whalen R. G. Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Lett. 1984 Jan 23;166(1):71–75. doi: 10.1016/0014-5793(84)80047-2. [DOI] [PubMed] [Google Scholar]
  13. Bárány M., Close R. I. The transformation of myosin in cross-innervated rat muscles. J Physiol. 1971 Mar;213(2):455–474. doi: 10.1113/jphysiol.1971.sp009393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cardinet G. H., 3rd, Freedland R. A., Tyler W. S., Julian L. M. Morphologic, histochemical, and quantitative enzyme study of hereditary avian muscular dystrophy. Am J Vet Res. 1972 Aug;33(8):1671–1684. [PubMed] [Google Scholar]
  15. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  16. Close R. Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J Physiol. 1969 Oct;204(2):331–346. doi: 10.1113/jphysiol.1969.sp008916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Coleman J. R., Coleman A. W. Muscle differentiation and macromolecular synthesis. J Cell Physiol. 1968 Oct;72(2 Suppl):19–34. doi: 10.1002/jcp.1040720404. [DOI] [PubMed] [Google Scholar]
  18. Cosmos E. Enzymatic activity of differentiating muscle fibers. I. Development of phosphorylase in muscles of the domestic fowl. Dev Biol. 1966 Apr;13(2):163–181. doi: 10.1016/0012-1606(66)90062-5. [DOI] [PubMed] [Google Scholar]
  19. Crisona N. J., Strohman R. C. Inhibition of contraction of cultured muscle fibers results in increased turnover of myofibrillar proteins but not of intermediate-filament proteins. J Cell Biol. 1983 Mar;96(3):684–692. doi: 10.1083/jcb.96.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ecob M. S., Butler-Browne G. S., Whalen R. G. The adult fast isozyme of myosin is present in a nerve-muscle tissue culture system. Differentiation. 1983;25(1):84–87. doi: 10.1111/j.1432-0436.1984.tb01342.x. [DOI] [PubMed] [Google Scholar]
  21. Friedman B., Powell J. A. Modulation of myosin heavy chain turnover by spontaneous action potential generation in cultured dysgenic (mdg) muscle. Dev Biol. 1981 Apr 30;83(2):399–404. doi: 10.1016/0012-1606(81)90488-7. [DOI] [PubMed] [Google Scholar]
  22. Gambke B., Lyons G. E., Haselgrove J., Kelly A. M., Rubinstein N. A. Thyroidal and neural control of myosin transitions during development of rat fast and slow muscles. FEBS Lett. 1983 Jun 13;156(2):335–339. doi: 10.1016/0014-5793(83)80524-9. [DOI] [PubMed] [Google Scholar]
  23. Goldberg A. L. Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol. 1967 Nov;213(5):1193–1198. doi: 10.1152/ajplegacy.1967.213.5.1193. [DOI] [PubMed] [Google Scholar]
  24. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  25. Heilig A., Pette D. Changes in transcriptional activity of chronically stimulated fast twitch muscle. FEBS Lett. 1983 Jan 24;151(2):211–214. doi: 10.1016/0014-5793(83)80071-4. [DOI] [PubMed] [Google Scholar]
  26. KONIGSBERG I. R. Clonal analysis of myogenesis. Science. 1963 Jun 21;140(3573):1273–1284. doi: 10.1126/science.140.3573.1273. [DOI] [PubMed] [Google Scholar]
  27. Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  29. Laurent G. J., Sparrow M. P., Millward D. J. Turnover of muscle protein in the fowl. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochem J. 1978 Nov 15;176(2):407–417. doi: 10.1042/bj1760407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lowey S., Benfield P. A., LeBlanc D. D., Waller G. S. Myosin isozymes in avian skeletal muscles. I. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J Muscle Res Cell Motil. 1983 Dec;4(6):695–716. doi: 10.1007/BF00712161. [DOI] [PubMed] [Google Scholar]
  31. MacDonald D. J., Kelly A. M. The rapid quantitation of serum alpha-fetoprotein by two-site micro enzyme immunoassay. Clin Chim Acta. 1978 Aug 1;87(3):367–372. doi: 10.1016/0009-8981(78)90180-8. [DOI] [PubMed] [Google Scholar]
  32. McDermott P., Daood M., Klein I. Contraction regulates myosin synthesis and myosin content of cultured heart cells. Am J Physiol. 1985 Oct;249(4 Pt 2):H763–H769. doi: 10.1152/ajpheart.1985.249.4.H763. [DOI] [PubMed] [Google Scholar]
  33. Moss P. S., Spector D. H., Glass C. A., Strohman R. C. Streptomycin retards the phenotypic maturation of chick myogenic cells. In Vitro. 1984 Jun;20(6):473–478. doi: 10.1007/BF02619620. [DOI] [PubMed] [Google Scholar]
  34. Moss P., Micou-Eastwood J., Strohman R. Altered synthesis of myosin light chains is associated with contractility in cultures of differentiating chick embryo breast muscle. Dev Biol. 1986 Apr;114(2):311–314. doi: 10.1016/0012-1606(86)90195-8. [DOI] [PubMed] [Google Scholar]
  35. Nakane P. K. Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem. 1968 Sep;16(9):557–560. doi: 10.1177/16.9.557. [DOI] [PubMed] [Google Scholar]
  36. O'Neill M., Strohman R. C. Changes in DNA polymerase activity associated with cell fusion in cultures of embryonic muscle. J Cell Physiol. 1969 Feb;73(1):61–68. doi: 10.1002/jcp.1040730109. [DOI] [PubMed] [Google Scholar]
  37. Obinata T., Saitoh O., Takano-Ohmuro H. Effect of denervation on the isoform transitions of tropomyosin, troponin T, and myosin isozyme in chicken breast muscle. J Biochem. 1984 Feb;95(2):585–588. doi: 10.1093/oxfordjournals.jbchem.a134643. [DOI] [PubMed] [Google Scholar]
  38. Purves D., Sakmann B. The effect of contractile activity on fibrillation and extrajunctional acetylcholine-sensitivity in rat muscle maintained in organ culture. J Physiol. 1974 Feb;237(1):157–182. doi: 10.1113/jphysiol.1974.sp010475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rubinstein N., Mabuchi K., Pepe F., Salmons S., Gergely J., Sreter F. Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J Cell Biol. 1978 Oct;79(1):252–261. doi: 10.1083/jcb.79.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Salmons S., Vrbová G. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol. 1969 May;201(3):535–549. doi: 10.1113/jphysiol.1969.sp008771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seedorf K., Seedorf U., Pette D. Coordinate expression of alkali and DTNB myosin light chains during transformation of rabbit fast muscle by chronic stimulation. FEBS Lett. 1983 Jul 25;158(2):321–324. doi: 10.1016/0014-5793(83)80605-x. [DOI] [PubMed] [Google Scholar]
  42. Shear C. R. Effects of disuse on growing and adult chick skeletal muscle. J Cell Sci. 1981 Apr;48:35–54. doi: 10.1242/jcs.48.1.35. [DOI] [PubMed] [Google Scholar]
  43. Shelton G. D., Bandman E. Unusual fast myosin isozyme pattern in the lateral gastrocnemius of the chicken. J Muscle Res Cell Motil. 1985 Aug;6(4):435–446. doi: 10.1007/BF00712581. [DOI] [PubMed] [Google Scholar]
  44. Shimada Y., Fischman D. A., Moscona A. A. The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J Cell Biol. 1967 Nov;35(2):445–453. doi: 10.1083/jcb.35.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Silberstein L., Webster S. G., Travis M., Blau H. M. Developmental progression of myosin gene expression in cultured muscle cells. Cell. 1986 Sep 26;46(7):1075–1081. doi: 10.1016/0092-8674(86)90707-5. [DOI] [PubMed] [Google Scholar]
  46. Smith J. W., Thesleff S. Spontaneous activity in denervated mouse diaphragm muscle. J Physiol. 1976 May;257(1):171–186. doi: 10.1113/jphysiol.1976.sp011362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Strohman R. C., Bandman E., Walker C. R. Regulation of myosin accumulation by muscle activity in cell culture. J Muscle Res Cell Motil. 1981 Sep;2(3):269–282. doi: 10.1007/BF00713266. [DOI] [PubMed] [Google Scholar]
  48. Strohman R. C., Moss P. S., Micou-Eastwood J., Spector D., Przybyla A., Paterson B. Messenger RNA for myosin polypeptides: isolation from single myogenic cell cultures. Cell. 1977 Feb;10(2):265–273. doi: 10.1016/0092-8674(77)90220-3. [DOI] [PubMed] [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vandenburgh H. H. Cell shape and growth regulation in skeletal muscle: exogenous versus endogenous factors. J Cell Physiol. 1983 Sep;116(3):363–371. doi: 10.1002/jcp.1041160314. [DOI] [PubMed] [Google Scholar]
  51. Voller A., Bidwell D. E., Bartlett A. Enzyme immunoassays in diagnostic medicine. Theory and practice. Bull World Health Organ. 1976;53(1):55–65. [PMC free article] [PubMed] [Google Scholar]
  52. Walker C. R., Wilson B. W. Regulation of acetylcholinesterase in cultured muscle by chemical agents and electrical stimulation. Neuroscience. 1976 Jun;1(3):191–196. doi: 10.1016/0306-4522(76)90076-2. [DOI] [PubMed] [Google Scholar]
  53. Walker C., Strohman R. Myosin turnover in cultured muscle fibers relaxed by tetrodotoxin. Exp Cell Res. 1978 Oct 15;116(2):341–348. doi: 10.1016/0014-4827(78)90457-3. [DOI] [PubMed] [Google Scholar]
  54. Whalen R. G., Schwartz K., Bouveret P., Sell S. M., Gros F. Contractile protein isozymes in muscle development: identification of an embryonic form of myosin heavy chain. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5197–5201. doi: 10.1073/pnas.76.10.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Winkelmann D. A., Lowey S., Press J. L. Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis. Cell. 1983 Aug;34(1):295–306. doi: 10.1016/0092-8674(83)90160-5. [DOI] [PubMed] [Google Scholar]
  56. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES