Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Dec 1;103(6):2353–2365. doi: 10.1083/jcb.103.6.2353

Stimulus-secretion coupling in the developing exocrine pancreas: secretory responsiveness to cholecystokinin

PMCID: PMC2114632  PMID: 3023399

Abstract

We have studied the onset of secretory responsiveness to cholecystokinin (CCK) during development of the rat exocrine pancreas. Although acinar cells of the fetal pancreas (1 d before birth) are filled with zymogen granules containing the secretory protein, alpha- amylase, the rate of amylase secretion from pancreatic lobules incubated in vitro was not increased in response to CCK. In contrast, the rate of CCK-stimulated amylase discharge from the neonatal pancreas (1 d after birth) was increased four- to eightfold above that of the fetal gland. The postnatal amplification of secretory responsiveness was not associated with an increase in the number or cell surface expression of 125I-CCK binding sites. When 125I-CCK-33 binding proteins were analyzed by affinity crosslinking, two proteins of Mr 210,000 and 100,000-160,000 were labeled specifically in both fetal and neonatal pancreas. To determine if cell surface receptors for CCK in the fetal pancreas are functional and able to generate a rise in the cytosolic [Ca++], we measured 45Ca++ efflux from tracer-loaded lobules. 45Ca++ efflux from both fetal and neonatal pancreas was comparably increased by CCK, indicating CCK-induced Ca++ mobilization and elevated cytosolic [Ca++]. The Ca++ ionophore A23187 also stimulated the rate of 45Ca++ extrusion from pancreas of both ages. Increased amylase secretion occurred concurrently with A23187-stimulated 45Ca++ efflux in neonatal pancreas, but not in the fetal gland. A23187 in combination with dibutyryl cAMP potentiated amylase release from the neonatal gland, but not from fetal pancreas. Similarly, the protein kinase C activator, phorbol dibutyrate, did not increase the rate of secretion from the fetal gland when added alone or in combination with A23187 or CCK. We suggest that CCK-receptor interaction in the fetal pancreas triggers intracellular Ca++ mobilization. However, one or more signal transduction events distal to Ca++ mobilization have not yet matured. The onset of secretory response to CCK that occurs postnatally may depend on amplification of these transduction events.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaven M. A., Moore J. P., Smith G. A., Hesketh T. R., Metcalfe J. C. The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J Biol Chem. 1984 Jun 10;259(11):7137–7142. [PubMed] [Google Scholar]
  3. Borle A. B., Uchikawa T., Anderson J. H. Computer simulation and interpretation of 45Ca efflux profile patterns. J Membr Biol. 1982;68(1):37–46. doi: 10.1007/BF01872252. [DOI] [PubMed] [Google Scholar]
  4. Case R. M., Clausen T. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J Physiol. 1973 Nov;235(1):75–102. doi: 10.1113/jphysiol.1973.sp010379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chandler D. E., Williams J. A. Intracellular uptake and alpha-amylase and lactate dehydrogenase releasing actions of the divalent cation ionophore A23187 in dissociated pancreatic acinar cells. J Membr Biol. 1977 Apr 22;32(3-4):201–230. doi: 10.1007/BF01905220. [DOI] [PubMed] [Google Scholar]
  6. Clemente F., Meldolesi J. Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J Cell Biol. 1975 Apr;65(1):88–102. doi: 10.1083/jcb.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doyle C. M., Jamieson J. D. Development of secretagogue response in rat pancreatic acinar cells. Dev Biol. 1978 Jul;65(1):11–27. doi: 10.1016/0012-1606(78)90175-6. [DOI] [PubMed] [Google Scholar]
  8. Eimerl S., Savion N., Heichal O., Selinger Z. Induction of enzyme secretion in rat pancreatic slices using the ionophore A-23187 and calcium. An experimental bypass of the hormone receptor pathway. J Biol Chem. 1974 Jun 25;249(12):3991–3993. [PubMed] [Google Scholar]
  9. Freedman S. D., Jamieson J. D. Hormone-induced protein phosphorylation. I. Relationship between secretagogue action and endogenous protein phosphorylation in intact cells from the exocrine pancreas and parotid. J Cell Biol. 1982 Dec;95(3):903–908. doi: 10.1083/jcb.95.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gardner J. D., Costenbader C. L., Uhlemann E. R. Effect of extracellular calcium on amylase release from dispersed pancreatic acini. Am J Physiol. 1979 Jun;236(6):E754–E762. doi: 10.1152/ajpendo.1979.236.6.E754. [DOI] [PubMed] [Google Scholar]
  11. Gardner J. D. Receptors for gastrointestinal hormones. Gastroenterology. 1979 Jan;76(1):202–214. [PubMed] [Google Scholar]
  12. Gardner J. D., Walker M. D., Rottman A. J. Effect of A23187 on amylase release from dispersed acini prepared from guinea pig pancreas. Am J Physiol. 1980 May;238(5):G458–G466. doi: 10.1152/ajpgi.1980.238.5.G458. [DOI] [PubMed] [Google Scholar]
  13. HOKIN L. E., HOKIN M. R. The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion. J Physiol. 1956 May 28;132(2):442–453. doi: 10.1113/jphysiol.1956.sp005536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heisler S., Fast D., Tenenhouse A. Role of Ca 2+ and cyclic AMP in protein secretion from rat exocrine pancreas. Biochim Biophys Acta. 1972 Oct 25;279(3):561–572. doi: 10.1016/0304-4165(72)90178-x. [DOI] [PubMed] [Google Scholar]
  15. Heisler S. Forskolin potentiates calcium-dependent amylase secretion from rat pancreatic acinar cells. Can J Physiol Pharmacol. 1983 Oct;61(10):1168–1176. doi: 10.1139/y83-174. [DOI] [PubMed] [Google Scholar]
  16. Hesketh T. R., Beaven M. A., Rogers J., Burke B., Warren G. B. Stimulated release of histamine by a rat mast cell line is inhibited during mitosis. J Cell Biol. 1984 Jun;98(6):2250–2254. doi: 10.1083/jcb.98.6.2250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Innis R. B., Snyder S. H. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6917–6921. doi: 10.1073/pnas.77.11.6917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jensen R. T., Lemp G. F., Gardner J. D. Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2079–2083. doi: 10.1073/pnas.77.4.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kawai Y., Graham S. M., Whitsel C., Arinze I. J. Hepatic adenylate cyclase. Development-dependent coupling to the beta-adrenergic receptor in the neonate. J Biol Chem. 1985 Sep 5;260(19):10826–10832. [PubMed] [Google Scholar]
  20. Kondo S., Schulz I. Ca++ fluxes in isolated cells of rat pancreas. effect of secretagogues and different Ca++ concentrations. J Membr Biol. 1976 Oct 20;29(1-2):185–203. doi: 10.1007/BF01868959. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lai E., Rosen O. M., Rubin C. S. Differentiation-dependent expression of catecholamine-stimulated adenylate cyclase. Roles of the beta-receptor and G/F protein in differentiating 3T3-L1 adipocytes. J Biol Chem. 1981 Dec 25;256(24):12866–12874. [PubMed] [Google Scholar]
  23. Leung Y. K., Lee P. C., Lebenthal E. Maturation of cholecystokinin receptors in pancreatic acini of rats. Am J Physiol. 1986 May;250(5 Pt 1):G594–G597. doi: 10.1152/ajpgi.1986.250.5.G594. [DOI] [PubMed] [Google Scholar]
  24. Madison L. D., Rosenzweig S. A., Jamieson J. D. Use of the heterobifunctional cross-linker m-maleimidobenzoyl N-hydroxysuccinimide ester to affinity label cholecystokinin binding proteins on rat pancreatic plasma membranes. J Biol Chem. 1984 Dec 10;259(23):14818–14823. [PubMed] [Google Scholar]
  25. Maylié-Pfenninge M. F., Jamieson J. D. Effect of 5-bromodeoxyuridine on appearance of cell-surface saccharides in organ cultures of embryonic pancreas. Dev Biol. 1981 Oct 15;87(1):16–23. doi: 10.1016/0012-1606(81)90055-5. [DOI] [PubMed] [Google Scholar]
  26. Maylié-Pfenninger M. F., Jamieson J. D. Development of cell surface saccharides on embryonic pancreatic cells. J Cell Biol. 1980 Jul;86(1):96–103. doi: 10.1083/jcb.86.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meldolesi J., Jamieson J. D., Palade G. E. Composition of cellular membranes in the pancreas of the guinea pig. I. Isolation of membrane fractions. J Cell Biol. 1971 Apr;49(1):109–129. doi: 10.1083/jcb.49.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Merritt J. E., Rubin R. P. Pancreatic amylase secretion and cytoplasmic free calcium. Effects of ionomycin, phorbol dibutyrate and diacylglycerols alone and in combination. Biochem J. 1985 Aug 15;230(1):151–159. doi: 10.1042/bj2300151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  30. Pandol S. J., Schoeffield M. S., Sachs G., Muallem S. Role of free cytosolic calcium in secretagogue-stimulated amylase release from dispersed acini from guinea pig pancreas. J Biol Chem. 1985 Aug 25;260(18):10081–10086. [PubMed] [Google Scholar]
  31. Pandol S. J., Thomas M. W., Schoeffield M. S., Sachs G., Muallem S. Role of calcium in cholecystokinin-stimulated phosphoinositide breakdown in exocrine pancreas. Am J Physiol. 1985 May;248(5 Pt 1):G551–G560. doi: 10.1152/ajpgi.1985.248.5.G551. [DOI] [PubMed] [Google Scholar]
  32. Parsa I., Marsh W. H., Fitzgerald P. J. Pancreas acinar cell differentiation. II. Comparative DNA and protein synthesis of the embryonic rat pancreas and the pancreatic anlage grown in organ culture. Am J Pathol. 1969 Dec;57(3):489–521. [PMC free article] [PubMed] [Google Scholar]
  33. Pictet R. L., Clark W. R., Williams R. H., Rutter W. J. An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 1972 Dec;29(4):436–467. doi: 10.1016/0012-1606(72)90083-8. [DOI] [PubMed] [Google Scholar]
  34. Putney J. W., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1–12. doi: 10.1016/0143-4160(86)90026-6. [DOI] [PubMed] [Google Scholar]
  35. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  36. Rosenzweig S. A., Madison L. D., Jamieson J. D. Analysis of cholecystokinin-binding proteins using endo-beta-N-acetylglucosaminidase F. J Cell Biol. 1984 Sep;99(3):1110–1116. doi: 10.1083/jcb.99.3.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rosenzweig S. A., Miller L. J., Jamieson J. D. Identification and localization of cholecystokinin-binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study. J Cell Biol. 1983 May;96(5):1288–1297. doi: 10.1083/jcb.96.5.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanders T. G., Rutter W. J. The developmental regulation of amylolytic and proteolytic enzymes in the embryonic rat pancreas. J Biol Chem. 1974 Jun 10;249(11):3500–3509. [PubMed] [Google Scholar]
  39. Sankaran H., Deveney C. W., Goldfine I. D., Williams J. A. Preparation of biologically active radioiodinated cholecystokinin for radioreceptor assay and radioimmunoassay. J Biol Chem. 1979 Oct 10;254(19):9349–9351. [PubMed] [Google Scholar]
  40. Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
  41. Scheele G. A., Palade G. E., Tartakoff A. M. Cell fractionation studies on the guinea pig pancreas. Redistribution of exocrine proteins during tissue homogenization. J Cell Biol. 1978 Jul;78(1):110–130. doi: 10.1083/jcb.78.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Scheele G., Haymovits A. Cholinergic and peptide-stimulated discharge of secretory protein in guinea pig pancreatic lobules. Role of intracellular and extracellular calcium. J Biol Chem. 1979 Oct 25;254(20):10346–10353. [PubMed] [Google Scholar]
  43. Schnaar R. L., Weigel P. H., Kuhlenschmidt M. S., Lee Y. C., Roseman S. Adhesion of chicken hepatocytes to polyacrylamide gels derivatized with N-acetylglucosamine. J Biol Chem. 1978 Nov 10;253(21):7940–7951. [PubMed] [Google Scholar]
  44. Schulz I. Messenger role of calcium in function of pancreatic acinar cells. Am J Physiol. 1980 Nov;239(5):G335–G347. doi: 10.1152/ajpgi.1980.239.5.G335. [DOI] [PubMed] [Google Scholar]
  45. Snowdowne K. W., Borle A. B. Measurement of cytosolic free calcium in mammalian cells with aequorin. Am J Physiol. 1984 Nov;247(5 Pt 1):C396–C408. doi: 10.1152/ajpcell.1984.247.5.C396. [DOI] [PubMed] [Google Scholar]
  46. Steigerwalt R. W., Williams J. A. Characterization of cholecystokinin receptors on rat pancreatic membranes. Endocrinology. 1981 Nov;109(5):1746–1753. doi: 10.1210/endo-109-5-1746. [DOI] [PubMed] [Google Scholar]
  47. Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
  48. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  49. Van Nest G. A., MacDonald R. J., Raman R. K., Rutter W. J. Proteins synthesized and secreted during rat pancreatic development. J Cell Biol. 1980 Sep;86(3):784–794. doi: 10.1083/jcb.86.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Werlin S. L., Grand R. J. Development of secretory mechanisms in rat pancreas. Am J Physiol. 1979 Apr;236(4):E446–E450. doi: 10.1152/ajpendo.1979.236.4.E446. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES