Abstract
Platelet shape change induced by ADP is relatively independent of external pH over the range 6-7. If the chloride ion in the buffer is replaced by weak acids, however, shape change is rapidly and reversibly inhibited as a function of lowered pH (92% at pH 6.0). This inhibition is correlated with lowered internal pH caused by the weak acids, as measured by the 5,5-dimethyloxazolidine 2,4-dione technique. Shape change was 50% inhibited at internal pH 6.4 when 50 mM NaCl was replaced by propionate (PR). When platelets were stimulated with ADP 10- 20 s after addition of PR to a final pH of 6 (PR6), both myosin light chain (MLC) phosphorylation and myosin and actin association with the cytoskeleton were reduced in correlation with the inhibition of shape change. But when ADP was added 30 s after PR6, the MLC phosphorylation was essentially the same in PR or in chloride, although shape change and myosin and actin association with the cytoskeleton remained inhibited. This was shown to be due mainly to endogenous phosphorylation of MLC. On return to neutral pH, platelets in PR immediately changed shape and myosin and actin became associated with the cytoskeleton. Two-dimensional tryptic peptides of MLC showed two major spots after PR6 treatment, indicating that both the MLC kinase site and the protein kinase C sites were phosphorylated. The results show that increased internal pH is not required for shape change, although it may affect the rate. In PR6, as after phorbol esters, MLC phosphorylation can be uncoupled from shape change. The association of myosin and actin with the cytoskeleton is closely correlated with shape change, suggesting that shape change requires the active interaction of these contractile proteins.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Conti M. A. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 1975 Aug 14;256(5518):597–598. doi: 10.1038/256597a0. [DOI] [PubMed] [Google Scholar]
- Anderson E. R., Foulks J. G. The effect of small organic anions on aggregation and shape change of rabbit platelets. Thromb Haemost. 1978 Aug 31;40(1):43–60. [PubMed] [Google Scholar]
- Born G. V. Observations on the change in shape of blood platelets brought about by adenosine diphosphate. J Physiol. 1970 Aug;209(2):487–511. doi: 10.1113/jphysiol.1970.sp009176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boron W. F., Roos A. Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am J Physiol. 1976 Sep;231(3):799–809. doi: 10.1152/ajplegacy.1976.231.3.799. [DOI] [PubMed] [Google Scholar]
- Bull B. S., Zucker M. B. Changes in platelet volume produced by temperature, metabolic inhibitors, and aggregating agents. Proc Soc Exp Biol Med. 1965 Nov;120(2):296–301. doi: 10.3181/00379727-120-30516. [DOI] [PubMed] [Google Scholar]
- Carroll R. C., Butler R. G., Morris P. A., Gerrard J. M. Separable assembly of platelet pseudopodal and contractile cytoskeletons. Cell. 1982 Sep;30(2):385–393. doi: 10.1016/0092-8674(82)90236-7. [DOI] [PubMed] [Google Scholar]
- Connolly T. M., Limbird L. E. Removal of extraplatelet Na+ eliminates indomethacin-sensitive secretion from human platelets stimulated by epinephrine, ADP, and thrombin. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5320–5324. doi: 10.1073/pnas.80.17.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dabrowska R., Hartshorne D. J. A Ca2+-and modulator-dependent myosin light chain kinase from non-muscle cells. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1352–1359. doi: 10.1016/0006-291x(78)91152-x. [DOI] [PubMed] [Google Scholar]
- Daniel J. L., Molish I. R., Holmsen H. Myosin phosphorylation in intact platelets. J Biol Chem. 1981 Jul 25;256(14):7510–7514. [PubMed] [Google Scholar]
- Daniel J. L., Molish I. R., Rigmaiden M., Stewart G. Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem. 1984 Aug 10;259(15):9826–9831. [PubMed] [Google Scholar]
- Deutsch C. J., Holian A., Holian S. K., Daniele R. P., Wilson D. F. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes. J Cell Physiol. 1979 Apr;99(1):79–93. doi: 10.1002/jcp.1040990110. [DOI] [PubMed] [Google Scholar]
- Deutsch C., Drown C., Rafalowska U., Silver I. A. Synaptosomes from rat brain: morphology, compartmentation, and transmembrane pH and electrical gradients. J Neurochem. 1981 Jun;36(6):2063–2072. doi: 10.1111/j.1471-4159.1981.tb10835.x. [DOI] [PubMed] [Google Scholar]
- Fox J. E., Phillips D. R. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem. 1982 Apr 25;257(8):4120–4126. [PubMed] [Google Scholar]
- Giles C. The platelet count and mean platelet volume. Br J Haematol. 1981 May;48(1):31–37. doi: 10.1111/j.1365-2141.1981.00031.x. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Cohen S., Rothstein A. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol. 1984 Mar;83(3):341–369. doi: 10.1085/jgp.83.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hathaway D. R., Adelstein R. S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1653–1657. doi: 10.1073/pnas.76.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horne W. C., Simons E. R. Effects of amiloride on the response of human platelets to bovine alphathrombin. Thromb Res. 1978 Oct;13(4):599–607. doi: 10.1016/0049-3848(78)90149-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Moolenaar W. H., Tertoolen L. G., de Laat S. W. The regulation of cytoplasmic pH in human fibroblasts. J Biol Chem. 1984 Jun 25;259(12):7563–7569. [PubMed] [Google Scholar]
- Nachmias V. T., Kavaler J., Jacubowitz S. Reversible association of myosin with the platelet cytoskeleton. Nature. 1985 Jan 3;313(5997):70–72. doi: 10.1038/313070a0. [DOI] [PubMed] [Google Scholar]
- Naka M., Nishikawa M., Adelstein R. S., Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature. 1983 Dec 1;306(5942):490–492. doi: 10.1038/306490a0. [DOI] [PubMed] [Google Scholar]
- Nishikawa M., Hidaka H., Adelstein R. S. Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase. The effect on actin-activated MgATPase activity. J Biol Chem. 1983 Dec 10;258(23):14069–14072. [PubMed] [Google Scholar]
- Nishikawa M., Sellers J. R., Adelstein R. S., Hidaka H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem. 1984 Jul 25;259(14):8808–8814. [PubMed] [Google Scholar]
- Pouysségur J., Sardet C., Franchi A., L'Allemain G., Paris S. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4833–4837. doi: 10.1073/pnas.81.15.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholey J. M., Taylor K. A., Kendrick-Jones J. Regulation of non-muscle myosin assembly by calmodulin-dependent light chain kinase. Nature. 1980 Sep 18;287(5779):233–235. doi: 10.1038/287233a0. [DOI] [PubMed] [Google Scholar]
- Siffert W., Akkerman J. W. Activation of sodium-proton exchange is a prerequisite for Ca2+ mobilization in human platelets. 1987 Jan 29-Feb 4Nature. 325(6103):456–458. doi: 10.1038/325456a0. [DOI] [PubMed] [Google Scholar]
- Siffert W., Mückenhoff K., Scheid P. Evidence for a role of NA+/H+ exchange in platelets activated with calcium-ionophore A 23187. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1123–1128. doi: 10.1016/0006-291x(84)91400-1. [DOI] [PubMed] [Google Scholar]
- Trybus K. M., Huiatt T. W., Lowey S. A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6151–6155. doi: 10.1073/pnas.79.20.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida K., Dubyak G., Nachmias V. T. Rapid effects of phorbol ester on platelet shape change, cytoskeleton and calcium transient. FEBS Lett. 1986 Oct 6;206(2):273–278. doi: 10.1016/0014-5793(86)80995-4. [DOI] [PubMed] [Google Scholar]
- Zieve P. D., Solomon H. M. The intracellular pH of the human platelet. J Clin Invest. 1966 Aug;45(8):1251–1254. doi: 10.1172/JCI105431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zucker M. B., Masiello N. C. The Triton X-100-insoluble residue ("cytoskeleton") of aggregated platelets contains increased lipid phosphorus as well as 125I-labeled glycoproteins. Blood. 1983 Apr;61(4):676–683. [PubMed] [Google Scholar]
- Zucker M. B., Nachmias V. T. Platelet activation. Arteriosclerosis. 1985 Jan-Feb;5(1):2–18. doi: 10.1161/01.atv.5.1.2. [DOI] [PubMed] [Google Scholar]
- de Hemptinne A., Marrannes R., Vanheel B. Influence of organic acids on intracellular pH. Am J Physiol. 1983 Sep;245(3):C178–C183. doi: 10.1152/ajpcell.1983.245.3.C178. [DOI] [PubMed] [Google Scholar]
