Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Oct 1;105(4):1741–1751. doi: 10.1083/jcb.105.4.1741

F-actin binds to the cytoplasmic surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium discoideum plasma membranes

PMCID: PMC2114643  PMID: 3312238

Abstract

F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N- ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin- membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett H., Condeelis J. Decoration with myosin subfragment-1 disrupts contacts between microfilaments and the cell membrane in isolated Dictyostelium cortices. J Cell Biol. 1984 Oct;99(4 Pt 1):1434–1440. doi: 10.1083/jcb.99.4.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown S. S., Petzold A. S. Using antibodies against Dictyostelium membranes to identify an actin-binding membrane protein. J Cell Biol. 1987 Mar;104(3):513–518. doi: 10.1083/jcb.104.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke M., Bazari W. L., Kayman S. C. Isolation and properties of calmodulin from Dictyostelium discoideum. J Bacteriol. 1980 Jan;141(1):397–400. doi: 10.1128/jb.141.1.397-400.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke M., Schatten G., Mazia D., Spudich J. A. Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 May;72(5):1758–1762. doi: 10.1073/pnas.72.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke M., Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. Isolation and characterization of myosin from amoebae of Dictyostelium discoideum. J Mol Biol. 1974 Jun 25;86(2):209–222. doi: 10.1016/0022-2836(74)90013-8. [DOI] [PubMed] [Google Scholar]
  8. Cocucci S. M., Sussman M. RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J Cell Biol. 1970 May;45(2):399–407. doi: 10.1083/jcb.45.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DYER J. R. Use of periodate oxidations in biochemical analysis. Methods Biochem Anal. 1956;3:111–152. doi: 10.1002/9780470110195.ch5. [DOI] [PubMed] [Google Scholar]
  10. DeRosier D. J., Tilney L. G. The form and function of actin. A product of its unique design. Cell Muscle Motil. 1984;5:139–169. doi: 10.1007/978-1-4684-4592-3_3. [DOI] [PubMed] [Google Scholar]
  11. Eckert B. S., Lazarides E. Localization of actin in Dictyostelium amebas by immunofluorescence. J Cell Biol. 1978 Jun;77(3):714–721. doi: 10.1083/jcb.77.3.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972 Jul;109(1):129–135. [PubMed] [Google Scholar]
  13. Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
  14. Giffard R. G., Spudich J. A., Spudich A. Ca2+-sensitive isolation of a cortical actin matrix from Dictyostelium amoebae. J Muscle Res Cell Motil. 1983 Feb;4(1):115–131. doi: 10.1007/BF00711962. [DOI] [PubMed] [Google Scholar]
  15. Goldstein I. J., Reichert C. M., Misaki A. Interaction of concanavalin A with model substrates. Ann N Y Acad Sci. 1974;234(0):283–296. doi: 10.1111/j.1749-6632.1974.tb53040.x. [DOI] [PubMed] [Google Scholar]
  16. Goodloe-Holland C. M., Luna E. J. A membrane cytoskeleton from Dictyostelium discoideum. III. Plasma membrane fragments bind predominantly to the sides of actin filaments. J Cell Biol. 1984 Jul;99(1 Pt 1):71–78. doi: 10.1083/jcb.99.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goodloe-Holland C. M., Luna E. J. Purification and characterization of Dictyostelium discoideum plasma membranes. Methods Cell Biol. 1987;28:103–128. doi: 10.1016/s0091-679x(08)61639-8. [DOI] [PubMed] [Google Scholar]
  18. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  19. Hjelmeland L. M., Chrambach A. Solubilization of functional membrane proteins. Methods Enzymol. 1984;104:305–318. doi: 10.1016/s0076-6879(84)04097-0. [DOI] [PubMed] [Google Scholar]
  20. Ingalls H. M., Goodloe-Holland C. M., Luna E. J. Junctional plasma membrane domains isolated from aggregating Dictyostelium discoideum amebae. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4779–4783. doi: 10.1073/pnas.83.13.4779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jacobson B. S. Interaction of the plasma membrane with the cytoskeleton: an overview. Tissue Cell. 1983;15(6):829–852. doi: 10.1016/0040-8166(83)90053-8. [DOI] [PubMed] [Google Scholar]
  22. Knecht D. A., Dimond R. L., Wheeler S., Loomis W. F. Antigenic determinants shared by lysosomal proteins of Dictyostelium discoideum. Characterization using monoclonal antibodies and isolation of mutations affecting the determinant. J Biol Chem. 1984 Aug 25;259(16):10633–10640. [PubMed] [Google Scholar]
  23. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Leary J. J., Brigati D. J., Ward D. C. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4045–4049. doi: 10.1073/pnas.80.13.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Loomis W. F., Jr Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res. 1971 Feb;64(2):484–486. doi: 10.1016/0014-4827(71)90107-8. [DOI] [PubMed] [Google Scholar]
  28. Luna E. J., Fowler V. M., Swanson J., Branton D., Taylor D. L. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity. J Cell Biol. 1981 Feb;88(2):396–409. doi: 10.1083/jcb.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luna E. J., Goodloe-Holland C. M., Ingalls H. M. A membrane cytoskeleton from Dictyostelium discoideum. II. Integral proteins mediate the binding of plasma membranes to F-actin affinity beads. J Cell Biol. 1984 Jul;99(1 Pt 1):58–70. doi: 10.1083/jcb.99.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Luna E. J., Wang Y. L., Voss E. W., Jr, Branton D., Taylor D. L. A stable, high capacity, F-actin affinity column. J Biol Chem. 1982 Nov 10;257(21):13095–13100. [PubMed] [Google Scholar]
  31. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  32. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  33. Nielsen B. L., Brown L. R. The basis for colored silver-protein complex formation in stained polyacrylamide gels. Anal Biochem. 1984 Sep;141(2):311–315. doi: 10.1016/0003-2697(84)90047-2. [DOI] [PubMed] [Google Scholar]
  34. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  35. Schleicher M., Gerisch G., Isenberg G. New actin-binding proteins from Dictyostelium discoideum. EMBO J. 1984 Sep;3(9):2095–2100. doi: 10.1002/j.1460-2075.1984.tb02096.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schwartz M. A., Luna E. J. Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum. J Cell Biol. 1986 Jun;102(6):2067–2075. doi: 10.1083/jcb.102.6.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1974 Sep 25;249(18):6013–6020. [PubMed] [Google Scholar]
  38. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  39. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  40. Stratford C. A., Brown S. S. Isolation of an actin-binding protein from membranes of Dictyostelium discoideum. J Cell Biol. 1985 Mar;100(3):727–735. doi: 10.1083/jcb.100.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tsang V. C., Hancock K., Simons A. R. Calibration of prestained protein molecular weight standards for use in the "Western" or enzyme-linked immunoelectrotransfer blot techniques. Anal Biochem. 1984 Dec;143(2):304–307. doi: 10.1016/0003-2697(84)90667-5. [DOI] [PubMed] [Google Scholar]
  42. Uyemura D. G., Brown S. S., Spudich J. A. Biochemical and structural characterization of actin from Dictyostelium discoideum. J Biol Chem. 1978 Dec 25;253(24):9088–9096. [PubMed] [Google Scholar]
  43. Van Eldik L. J., Wolchok S. R. Conditions for reproducible detection of calmodulin and S100 beta in immunoblots. Biochem Biophys Res Commun. 1984 Nov 14;124(3):752–759. doi: 10.1016/0006-291x(84)91022-2. [DOI] [PubMed] [Google Scholar]
  44. Wang Y. L., Taylor D. L. Preparation and characterization of a new molecular cytochemical probe: 5-iodoacetamidofluorescein-labeled actin. J Histochem Cytochem. 1980 Nov;28(11):1198–1206. doi: 10.1177/28.11.6107318. [DOI] [PubMed] [Google Scholar]
  45. Wang Y. L., Taylor D. L. Probing the dynamic equilibrium of actin polymerization by fluorescence energy transfer. Cell. 1981 Dec;27(3 Pt 2):429–436. doi: 10.1016/0092-8674(81)90384-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES