Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Oct 1;105(4):1595–1601. doi: 10.1083/jcb.105.4.1595

Receptor-mediated vectorial transcytosis of epidermal growth factor by Madin-Darby canine kidney cells

PMCID: PMC2114648  PMID: 3312235

Abstract

Transcellular transport of a variety of ligands may be an important mechanism by which regulatory substances reach their site of action. We have studied the transcellular transport of two 6,000-mol-wt proteins, epidermal growth factor (EGF) and insulin, across polarized Madin-Darby canine kidney (MDCK) cells grown on dual-sided chambers on a nitrocellulose filter substrate. When grown on these chambers, MDCK cells are polarized and express distinct basal and apical surfaces. MDCK cells are capable of unidirectional transport of EGF from the basal-to-apical direction, 50% of bound EGF transported in 2 h. Transport was inhibited by the addition of unlabeled EGF in a dose- dependent manner. Anti-EGF receptor Ab, which inhibited binding, also inhibited transport. No transport in the apical-to-basal direction is noted. Insulin transport is not observed in either direction. Transport correlates with the presence of ligand-specific receptors on the cell surface. Hence, EGF receptors (Ro = 48,000, Kd = 3.5 X 10(-10) M) are found only on the basal surface of the MDCK cells and neither surface expresses insulin receptors. Characterization of the EGF receptors on MDCK cells, as assessed by affinity, molecular mass, and anti-receptor antibody binding reveals that this receptor has similar characteristics to EGF receptors previously described on a variety of cells. Hence, the EGF receptor can function as a transporter of EGF across an epithelial cell barrier.

Full Text

The Full Text of this article is available as a PDF (913.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beguinot L., Hanover J. A., Ito S., Richert N. D., Willingham M. C., Pastan I. Phorbol esters induce transient internalization without degradation of unoccupied epidermal growth factor receptors. Proc Natl Acad Sci U S A. 1985 May;82(9):2774–2778. doi: 10.1073/pnas.82.9.2774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caplan M. J., Anderson H. C., Palade G. E., Jamieson J. D. Intracellular sorting and polarized cell surface delivery of (Na+,K+)ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell. 1986 Aug 15;46(4):623–631. doi: 10.1016/0092-8674(86)90888-3. [DOI] [PubMed] [Google Scholar]
  3. Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
  4. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen S., Carpenter G., King L., Jr Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem. 1980 May 25;255(10):4834–4842. [PubMed] [Google Scholar]
  6. Crettaz M., Jialal I., Kasuga M., Kahn C. R. Insulin receptor regulation and desensitization in rat hepatoma cells. The loss of the oligomeric forms of the receptor correlates with the change in receptor affinity. J Biol Chem. 1984 Sep 25;259(18):11543–11549. [PubMed] [Google Scholar]
  7. Ghitescu L., Fixman A., Simionescu M., Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol. 1986 Apr;102(4):1304–1311. doi: 10.1083/jcb.102.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hachiya H. L., Carpentier J. L., King G. L. Comparative studies on insulin-like growth factor II and insulin processing by vascular endothelial cells. Diabetes. 1986 Oct;35(10):1065–1072. doi: 10.2337/diab.35.10.1065. [DOI] [PubMed] [Google Scholar]
  9. Herzog V. Transcytosis in thyroid follicle cells. J Cell Biol. 1983 Sep;97(3):607–617. doi: 10.1083/jcb.97.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hofmann C., Crettaz M., Bruns P., Hessel P., Hadawi G. Cellular responses elicited by insulin mimickers in cells lacking detectable plasma membrane insulin receptors. J Cell Biochem. 1985;27(4):401–414. doi: 10.1002/jcb.240270409. [DOI] [PubMed] [Google Scholar]
  11. Kahn C. R., Baird K. L., Flier J. S., Grunfeld C., Harmon J. T., Harrison L. C., Karlsson F. A., Kasuga M., King G. L., Lang U. C. Insulin receptors, receptor antibodies, and the mechanism of insulin action. Recent Prog Horm Res. 1981;37:477–538. doi: 10.1016/b978-0-12-571137-1.50015-3. [DOI] [PubMed] [Google Scholar]
  12. Kasuga M., Zick Y., Blith D. L., Karlsson F. A., Häring H. U., Kahn C. R. Insulin stimulation of phosphorylation of the beta subunit of the insulin receptor. Formation of both phosphoserine and phosphotyrosine. J Biol Chem. 1982 Sep 10;257(17):9891–9894. [PubMed] [Google Scholar]
  13. King G. L., Johnson S. M., Jialal I. Processing and transport of insulin by vascular endothelial cells. Effects of sulfonylureas on insulin receptors. Am J Med. 1985 Sep 20;79(3B):43–47. doi: 10.1016/s0002-9343(85)80006-1. [DOI] [PubMed] [Google Scholar]
  14. King G. L., Johnson S. M. Receptor-mediated transport of insulin across endothelial cells. Science. 1985 Mar 29;227(4694):1583–1586. doi: 10.1126/science.3883490. [DOI] [PubMed] [Google Scholar]
  15. Louvard D. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4132–4136. doi: 10.1073/pnas.77.7.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marshall S. Kinetics of insulin receptor internalization and recycling in adipocytes. Shunting of receptors to a degradative pathway by inhibitors of recycling. J Biol Chem. 1985 Apr 10;260(7):4136–4144. [PubMed] [Google Scholar]
  17. Martinez-Palomo A., Meza I., Beaty G., Cereijido M. Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol. 1980 Dec;87(3 Pt 1):736–745. doi: 10.1083/jcb.87.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matlin K. S., Simons K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell. 1983 Aug;34(1):233–243. doi: 10.1016/0092-8674(83)90154-x. [DOI] [PubMed] [Google Scholar]
  19. Matlin K. S., Simons K. Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J Cell Biol. 1984 Dec;99(6):2131–2139. doi: 10.1083/jcb.99.6.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matlin K., Bainton D. F., Pesonen M., Louvard D., Genty N., Simons K. Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. I. Morphological evidence. J Cell Biol. 1983 Sep;97(3):627–637. doi: 10.1083/jcb.97.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Misek D. E., Bard E., Rodriguez-Boulan E. Biogenesis of epithelial cell polarity: intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein. Cell. 1984 Dec;39(3 Pt 2):537–546. doi: 10.1016/0092-8674(84)90460-4. [DOI] [PubMed] [Google Scholar]
  22. Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mostov K. E., Blobel G. Transcellular transport of polymeric immunoglobulin by secretory component: a model system for studying intracellular protein sorting. Ann N Y Acad Sci. 1983 Jun 30;409:441–451. doi: 10.1111/j.1749-6632.1983.tb26888.x. [DOI] [PubMed] [Google Scholar]
  24. Mostov K. E., Deitcher D. L. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell. 1986 Aug 15;46(4):613–621. doi: 10.1016/0092-8674(86)90887-1. [DOI] [PubMed] [Google Scholar]
  25. Nambi P., Peters J. R., Sibley D. R., Lefkowitz R. J. Desensitization of the turkey erythrocyte beta-adrenergic receptor in a cell-free system. Evidence that multiple protein kinases can phosphorylate and desensitize the receptor. J Biol Chem. 1985 Feb 25;260(4):2165–2171. [PubMed] [Google Scholar]
  26. Nelson W. J., Veshnock P. J. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1986 Nov;103(5):1751–1765. doi: 10.1083/jcb.103.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pesonen M., Simons K. Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. II. Immunological quantitation. J Cell Biol. 1983 Sep;97(3):638–643. doi: 10.1083/jcb.97.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Posner B. I., Khan M. N., Bergeron J. J. Endocytosis of peptide hormones and other ligands. Endocr Rev. 1982 Summer;3(3):280–298. doi: 10.1210/edrv-3-3-280. [DOI] [PubMed] [Google Scholar]
  29. Richardson J. C., Simmons N. L. Demonstration of protein asymmetries in the plasma membrane of cultured renal (MDCK) epithelial cells by lactoperoxidase-mediated iodination. FEBS Lett. 1979 Sep 15;105(2):201–204. doi: 10.1016/0014-5793(79)80611-0. [DOI] [PubMed] [Google Scholar]
  30. Schlessinger J. Allosteric regulation of the epidermal growth factor receptor kinase. J Cell Biol. 1986 Dec;103(6 Pt 1):2067–2072. doi: 10.1083/jcb.103.6.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schwartz A. L., Bolognesi A., Fridovich S. E. Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells. J Cell Biol. 1984 Feb;98(2):732–738. doi: 10.1083/jcb.98.2.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Siminoski K., Gonnella P., Bernanke J., Owen L., Neutra M., Murphy R. A. Uptake and transepithelial transport of nerve growth factor in suckling rat ileum. J Cell Biol. 1986 Nov;103(5):1979–1990. doi: 10.1083/jcb.103.5.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Deurs B., Von Bülow F., Møller M. Vesicular transport of cationized ferritin by the epithelium of the rat choroid plexus. J Cell Biol. 1981 Apr;89(1):131–139. doi: 10.1083/jcb.89.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wall D. A., Maack T. Endocytic uptake, transport, and catabolism of proteins by epithelial cells. Am J Physiol. 1985 Jan;248(1 Pt 1):C12–C20. doi: 10.1152/ajpcell.1985.248.1.C12. [DOI] [PubMed] [Google Scholar]
  36. Yamashiro D. J., Maxfield F. R. Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem. 1984;26(4):231–246. doi: 10.1002/jcb.240260404. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES