Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Oct 1;105(4):1847–1854. doi: 10.1083/jcb.105.4.1847

Effects of preganglionic denervation and postganglionic axotomy on acetylcholine receptors in the chick ciliary ganglion

PMCID: PMC2114658  PMID: 3667699

Abstract

The regulation of nicotinic acetylcholine receptors (AChRs) in chick ciliary ganglia was examined by using a radiolabeled anti-AChR mAb to quantitate the amount of receptor in ganglion detergent extracts after preganglionic denervation or postganglionic axotomy. Surgical transection of the preganglionic input to the ciliary ganglion in newly hatched chicks caused a threefold reduction in the total number of AChRs within 10 d compared with that present in unoperated contralateral control ganglia. Surgical transection of both the choroid and ciliary nerves emerging from the ciliary ganglion in newly hatched chicks to establish postganglionic axotomy led to a nearly 10-fold reduction in AChRs within 5 d compared with unoperated contralateral ganglia. The declines were specific since they could not be accounted for by changes in ganglionic protein or by decreases in neuronal survival or size. Light microscopy revealed no gross morphological differences between neurons in operated and control ganglia. A second membrane component of cholinergic relevance on chick ciliary ganglion neurons is the alpha-bungarotoxin (alpha-Bgt)-binding component. The alpha-Bgt-binding component also declined in number after either postganglionic axotomy or preganglionic denervation, but appeared to do so with a more rapid time course than did ganglionic AChRs. The results imply that cell-cell interactions in vivo specifically regulate both the number of AChRs and the number of alpha-Bgt-binding components in the ganglion. Regulation of these neuronal cholinergic membrane components clearly differs from that previously described for muscle AChRs.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Cohen M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):757–773. doi: 10.1113/jphysiol.1977.sp011880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barkas T., Mauron A., Roth B., Alliod C., Tzartos S. J., Ballivet M. Mapping the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. Science. 1987 Jan 2;235(4784):77–80. doi: 10.1126/science.2432658. [DOI] [PubMed] [Google Scholar]
  3. Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., Patrick J. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. 1986 Jan 30-Feb 5Nature. 319(6052):368–374. doi: 10.1038/319368a0. [DOI] [PubMed] [Google Scholar]
  4. Brenner H. R., Johnson E. W. Physiological and morphological effects of post-ganglionic axotomy on presynaptic nerve terminals. J Physiol. 1976 Aug;260(1):143–158. doi: 10.1113/jphysiol.1976.sp011508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner H. R., Martin A. R. Reduction in acetylcholine sensitivity of axotomized ciliary ganglion cells. J Physiol. 1976 Aug;260(1):159–175. doi: 10.1113/jphysiol.1976.sp011509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conti-Tronconi B. M., Dunn S. M., Barnard E. A., Dolly J. O., Lai F. A., Ray N., Raftery M. A. Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5208–5212. doi: 10.1073/pnas.82.15.5208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dennis M. J., Sargent P. B. Loss of extrasynaptic acetylcholine sensitivity upon reinnervation of parasympathetic ganglion cells. J Physiol. 1979 Apr;289:263–275. doi: 10.1113/jphysiol.1979.sp012736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunn P. M., Marshall L. M. Lack of nicotinic supersensitivity in frog sympathetic neurones following denervation. J Physiol. 1985 Jun;363:211–225. doi: 10.1113/jphysiol.1985.sp015705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  10. Fumagalli L., De Renzis G., Miani N. alpha-Bungarotoxin-acetylcholine receptors in the chick ciliary ganglion: effects of deafferentation and axotomy. Brain Res. 1978 Sep 15;153(1):87–98. doi: 10.1016/0006-8993(78)91130-7. [DOI] [PubMed] [Google Scholar]
  11. Giacobini E., Pilar G., Suszkiw J., Uchimura H. Normal distribution and denervation changes of neurotransmitter related enzymes in cholinergic neurones. J Physiol. 1979 Jan;286:233–253. doi: 10.1113/jphysiol.1979.sp012616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldman D., Deneris E., Luyten W., Kochhar A., Patrick J., Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell. 1987 Mar 27;48(6):965–973. doi: 10.1016/0092-8674(87)90705-7. [DOI] [PubMed] [Google Scholar]
  13. Goldman D., Simmons D., Swanson L. W., Patrick J., Heinemann S. Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor alpha-subunit cDNAs. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4076–4080. doi: 10.1073/pnas.83.11.4076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hall Z. W., Reiness C. G. Electrical stimulation of denervated muscles reduces incorporation of methionine into the ACh receptor. Nature. 1977 Aug 18;268(5621):655–657. doi: 10.1038/268655a0. [DOI] [PubMed] [Google Scholar]
  15. Halvorsen S. W., Berg D. K. Affinity labeling of neuronal acetylcholine receptor subunits with an alpha-neurotoxin that blocks receptor function. J Neurosci. 1987 Aug;7(8):2547–2555. [PMC free article] [PubMed] [Google Scholar]
  16. Halvorsen S. W., Berg D. K. Identification of a nicotinic acetylcholine receptor on neurons using an alpha-neurotoxin that blocks receptor function. J Neurosci. 1986 Nov;6(11):3405–3412. doi: 10.1523/JNEUROSCI.06-11-03405.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harris A. J., Kuffler S. W., Dennis M. J. Differential chemosensitivity of synaptic and extrasynaptic areas on the neuronal surface membrane in parasympathetic neurons of the frog, tested by microapplication of acetylcholine. Proc R Soc Lond B Biol Sci. 1971 Apr 27;177(1049):541–553. doi: 10.1098/rspb.1971.0046. [DOI] [PubMed] [Google Scholar]
  18. Jacob M. H., Berg D. K., Lindstrom J. M. Shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chicken ciliary ganglion neurons. Proc Natl Acad Sci U S A. 1984 May;81(10):3223–3227. doi: 10.1073/pnas.81.10.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacob M. H., Berg D. K. The ultrastructural localization of alpha-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J Neurosci. 1983 Feb;3(2):260–271. doi: 10.1523/JNEUROSCI.03-02-00260.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacob M. H., Lindstrom J. M., Berg D. K. Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor. J Cell Biol. 1986 Jul;103(1):205–214. doi: 10.1083/jcb.103.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knaack D., Shen I., Salpeter M. M., Podleski T. R. Selective effects of ascorbic acid on acetylcholine receptor number and distribution. J Cell Biol. 1986 Mar;102(3):795–802. doi: 10.1083/jcb.102.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuffler S. W., Dennis M. J., Harris A. J. The development of chemosensitivity in extrasynaptic areas of the neuronal surface after denervation of parasympathetic ganglion cells in the heart of the frog. Proc R Soc Lond B Biol Sci. 1971 Apr 27;177(1049):555–563. doi: 10.1098/rspb.1971.0047. [DOI] [PubMed] [Google Scholar]
  23. Landmesser L., Pilar G. Synapse formation during embryogenesis on ganglion cells lacking a periphery. J Physiol. 1974 Sep;241(3):715–736. doi: 10.1113/jphysiol.1974.sp010680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lomo T., Rosenthal J. Control of ACh sensitivity by muscle activity in the rat. J Physiol. 1972 Mar;221(2):493–513. doi: 10.1113/jphysiol.1972.sp009764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Loring R. H., Dahm L. M., Zigmond R. E. Localization of alpha-bungarotoxin binding sites in the ciliary ganglion of the embryonic chick: an autoradiographic study at the light and electron microscopic level. Neuroscience. 1985 Feb;14(2):645–660. doi: 10.1016/0306-4522(85)90316-1. [DOI] [PubMed] [Google Scholar]
  26. Loring R. H., Zigmond R. E. Ultrastructural distribution of 125I-toxin F binding sites on chick ciliary neurons: synaptic localization of a toxin that blocks ganglionic nicotinic receptors. J Neurosci. 1987 Jul;7(7):2153–2162. doi: 10.1523/JNEUROSCI.07-07-02153.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meunier J. C., Sealock R., Olsen R., Changeux J. P. Purification and properties of the cholinergic receptor protein from Electrophorus electricus electric tissue. Eur J Biochem. 1974 Jun 15;45(2):371–394. doi: 10.1111/j.1432-1033.1974.tb03563.x. [DOI] [PubMed] [Google Scholar]
  28. Nishi R., Berg D. K. Dissociated ciliary ganglion neurons in vitro: survival and synapse formation. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5171–5175. doi: 10.1073/pnas.74.11.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Patrick J., Stallcup W. B. Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin-binding component on sympathetic neurons. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4689–4692. doi: 10.1073/pnas.74.10.4689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pilar G., Landmesser L. Axotomy mimicked by localized colchicine application. Science. 1972 Sep 22;177(4054):1116–1118. doi: 10.1126/science.177.4054.1116. [DOI] [PubMed] [Google Scholar]
  31. Purves D. Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J Physiol. 1975 Nov;252(2):429–463. doi: 10.1113/jphysiol.1975.sp011151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ravdin P. M., Berg D. K. Inhibition of neuronal acetylcholine sensitivity by alpha-toxins from Bungarus multicinctus venom. Proc Natl Acad Sci U S A. 1979 Apr;76(4):2072–2076. doi: 10.1073/pnas.76.4.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ravdin P. M., Nitkin R. M., Berg D. K. Internalization of alpha-bungarotoxin on neurons induced by a neurotoxin that blocks neuronal acetylcholine sensitivity. J Neurosci. 1981 Aug;1(8):849–861. doi: 10.1523/JNEUROSCI.01-08-00849.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Role L. W., Matossian V. R., O'Brien R. J., Fischbach G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J Neurosci. 1985 Aug;5(8):2197–2204. doi: 10.1523/JNEUROSCI.05-08-02197.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roper S. The acetylcholine sensitivity of the surface membrane of multiply-innervated parasympathetic ganglion cells in the mudpuppy before and after partial denervation. J Physiol. 1976 Jan;254(2):455–473. doi: 10.1113/jphysiol.1976.sp011240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schuetze S. M., Role L. W. Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci. 1987;10:403–457. doi: 10.1146/annurev.ne.10.030187.002155. [DOI] [PubMed] [Google Scholar]
  37. Smith M. A., Margiotta J. F., Franco A., Jr, Lindstrom J. M., Berg D. K. Cholinergic modulation of an acetylcholine receptor-like antigen on the surface of chick ciliary ganglion neurons in cell culture. J Neurosci. 1986 Apr;6(4):946–953. doi: 10.1523/JNEUROSCI.06-04-00946.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith M. A., Stollberg J., Lindstrom J. M., Berg D. K. Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor. J Neurosci. 1985 Oct;5(10):2726–2731. doi: 10.1523/JNEUROSCI.05-10-02726.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stollberg J., Berg D. K. Neuronal acetylcholine receptors: fate of surface and internal pools in cell culture. J Neurosci. 1987 Jun;7(6):1809–1815. doi: 10.1523/JNEUROSCI.07-06-01809.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stollberg J., Whiting P. J., Lindstrom J. M., Berg D. K. Functional blockade of neuronal acetylcholine receptors by antisera to a putative receptor from brain. Brain Res. 1986 Jul 16;378(1):179–182. doi: 10.1016/0006-8993(86)90302-1. [DOI] [PubMed] [Google Scholar]
  41. Tuttle J. B. Interaction with membrane remnants of target myotubes maintains transmitter sensitivity of cultured neurons. Science. 1983 May 27;220(4600):977–979. doi: 10.1126/science.6133352. [DOI] [PubMed] [Google Scholar]
  42. Tzartos S. J., Rand D. E., Einarson B. L., Lindstrom J. M. Mapping of surface structures of electrophorus acetylcholine receptor using monoclonal antibodies. J Biol Chem. 1981 Aug 25;256(16):8635–8645. [PubMed] [Google Scholar]
  43. Usdin T. B., Fischbach G. D. Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes. J Cell Biol. 1986 Aug;103(2):493–507. doi: 10.1083/jcb.103.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Whiting P. J., Lindstrom J. M. Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry. 1986 Apr 22;25(8):2082–2093. doi: 10.1021/bi00356a037. [DOI] [PubMed] [Google Scholar]
  45. Whiting P., Lindstrom J. Pharmacological properties of immuno-isolated neuronal nicotinic receptors. J Neurosci. 1986 Oct;6(10):3061–3069. doi: 10.1523/JNEUROSCI.06-10-03061.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES