Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Oct 1;105(4):1691–1705. doi: 10.1083/jcb.105.4.1691

On the mechanism of anaphase A: evidence that ATP is needed for microtubule disassembly and not generation of polewards force

PMCID: PMC2114660  PMID: 3312236

Abstract

As anaphase began, mitotic PtK1 and newt lung epithelial cells were permeabilized with digitonin in permeabilization medium (PM). Permeabilization stopped cytoplasmic activity, chromosome movement, and cytokinesis within about 3 min, presumably due to the loss of endogenous ATP. ATP, GTP, or ATP-gamma-S added in the PM 4-7 min later restarted anaphase A while kinetochore fibers shortened. AMPPNP could not restart anaphase A; ATP was ineffective if the spindle was stabilized in PM + DMSO. Cells permeabilized in PM + taxol varied in their response to ATP depending on the stage of anaphase reached: one mid-anaphase cell showed initial movement of chromosomes back to the metaphase plate upon permeabilization but later, anaphase A resumed when ATP was added. Anaphase A was also reactivated by cold PM (approximately 16 degrees C) or PM containing calcium (1-10 mM). Staining of fixed cells with antitubulin showed that microtubules (MTs) were relatively stable after permeabilization and MT assembly was usually promoted in asters. Astral and kinetochore MTs were sensitive to MT disassembly conditions, and shortening of kinetochore MTs always accompanied reactivation of anaphase A. Interphase and interzonal spindle MTs were relatively stable to cold and calcium until extraction of cells was promoted by longer periods in the PM, or by higher concentrations of detergent. Since we cannot envisage how both cold treatment or relatively high calcium levels can reactivate spindle motility in quiescent, permeabilized, and presumably energy-depleted cells, we conclude that anaphase A is powered by energy stored in the spindle. The nucleotide triphosphates effective in reactivating anaphase A could be necessary for the kinetochore MT disassembly without which anaphase movement cannot proceed.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai D. J., Brokaw C. J., Thompson W. C., Wilson L. Two different monoclonal antibodies to alpha-tubulin inhibit the bending of reactivated sea urchin spermatozoa. Cell Motil. 1982;2(6):599–614. doi: 10.1002/cm.970020608. [DOI] [PubMed] [Google Scholar]
  2. Bajer A. S., Cypher C., Molè-Bajer J., Howard H. M. Taxol-induced anaphase reversal: evidence that elongating microtubules can exert a pushing force in living cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6569–6573. doi: 10.1073/pnas.79.21.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bershadsky A. D., Gelfand V. I. ATP-dependent regulation of cytoplasmic microtubule disassembly. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3610–3613. doi: 10.1073/pnas.78.6.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
  5. Cande W. Z. Permeabilized cell models for studying chromosome movement in dividing PtK1 cells. Methods Cell Biol. 1982;25(Pt B):57–68. doi: 10.1016/s0091-679x(08)61420-x. [DOI] [PubMed] [Google Scholar]
  6. Cande W. Z., Snyder J., Smith D., Summers K., McIntosh J. R. A functional mitotic spindle prepared from mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1559–1563. doi: 10.1073/pnas.71.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cande W. Z., Wolniak S. M. Chromosome movement in lysed mitotic cells is inhibited by vanadate. J Cell Biol. 1978 Nov;79(2 Pt 1):573–580. doi: 10.1083/jcb.79.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark T. G., Rosenbaum J. L. Energy requirements for pigment aggregation in fundulus melanophores. Cell Motil. 1984;4(6):431–441. doi: 10.1002/cm.970040604. [DOI] [PubMed] [Google Scholar]
  9. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Microtubule stability and assembly in living cells: the influence of metabolic inhibitors, taxol and pH. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):227–240. doi: 10.1101/sqb.1982.046.01.026. [DOI] [PubMed] [Google Scholar]
  10. Fiskum G., Craig S. W., Decker G. L., Lehninger A. L. The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3430–3434. doi: 10.1073/pnas.77.6.3430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fuseler J. W. Temperature dependence of anaphase chromosome velocity and microtubule depolymerization. J Cell Biol. 1975 Dec;67(3):789–800. doi: 10.1083/jcb.67.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hays T. S., Wise D., Salmon E. D. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J Cell Biol. 1982 May;93(2):374–389. doi: 10.1083/jcb.93.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hepler P. K. Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells. J Cell Biol. 1985 May;100(5):1363–1368. doi: 10.1083/jcb.100.5.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hepler P. K. Membranes in the mitotic apparatus of barley cells. J Cell Biol. 1980 Aug;86(2):490–499. doi: 10.1083/jcb.86.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hepler P. K., Palevitz B. A. Metabolic inhibitors block anaphase A in vivo. J Cell Biol. 1986 Jun;102(6):1995–2005. doi: 10.1083/jcb.102.6.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hepler P. K., Wolniak S. M. Membranes in the mitotic apparatus: their structure and function. Int Rev Cytol. 1984;90:169–238. doi: 10.1016/s0074-7696(08)61490-4. [DOI] [PubMed] [Google Scholar]
  17. Hill T. L., Kirschner M. W. Regulation of microtubule and actin filament assembly--disassembly by associated small and large molecules. Int Rev Cytol. 1983;84:185–234. doi: 10.1016/s0074-7696(08)61018-9. [DOI] [PubMed] [Google Scholar]
  18. Inoué S. Cell division and the mitotic spindle. J Cell Biol. 1981 Dec;91(3 Pt 2):131s–147s. doi: 10.1083/jcb.91.3.131s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Inoué S., Fuseler J., Salmon E. D., Ellis G. W. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system. Biophys J. 1975 Jul;15(7):725–744. doi: 10.1016/S0006-3495(75)85850-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  21. Izant J. G. The role of calcium ions during mitosis. Calcium participates in the anaphase trigger. Chromosoma. 1983;88(1):1–10. doi: 10.1007/BF00329497. [DOI] [PubMed] [Google Scholar]
  22. Kiehart D. P. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system. J Cell Biol. 1981 Mar;88(3):604–617. doi: 10.1083/jcb.88.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LaFountain J. R., Jr Spindle shape changes as an indicator of force production in crane-fly spermatocytes. J Cell Sci. 1972 Jan;10(1):79–93. doi: 10.1242/jcs.10.1.79. [DOI] [PubMed] [Google Scholar]
  24. Leslie R. J., Hird R. B., Wilson L., McIntosh J. R., Scholey J. M. Kinesin is associated with a nonmicrotubule component of sea urchin mitotic spindles. Proc Natl Acad Sci U S A. 1987 May;84(9):2771–2775. doi: 10.1073/pnas.84.9.2771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leslie R. J., Pickett-Heaps J. D. Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. J Cell Biol. 1983 Feb;96(2):548–561. doi: 10.1083/jcb.96.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Magistrini M., Szöllösi D. Effects of cold and of isopropyl-N-phenylcarbamate on the second meiotic spindle of mouse oocytes. Eur J Cell Biol. 1980 Oct;22(2):699–707. [PubMed] [Google Scholar]
  27. McNeill P. A., Berns M. W. Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. J Cell Biol. 1981 Mar;88(3):543–553. doi: 10.1083/jcb.88.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  29. Moskalewski S., Thyberg J., Friberg U. Cold and metabolic inhibitor effects on cytoplasmic microtubules and the Golgi complex in cultured rat epiphyseal chondrocytes. Cell Tissue Res. 1980;210(3):403–415. doi: 10.1007/BF00220198. [DOI] [PubMed] [Google Scholar]
  30. Murphy E., Coll K., Rich T. L., Williamson J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem. 1980 Jul 25;255(14):6600–6608. [PubMed] [Google Scholar]
  31. Pickett-Heaps J. D., Spurck T. P. Studies on kinetochore function in mitosis. II. The effects of metabolic inhibitors on mitosis and cytokinesis in the diatom Hantzschia amphioxys. Eur J Cell Biol. 1982 Aug;28(1):83–91. [PubMed] [Google Scholar]
  32. Pickett-Heaps J. D., Tippit D. H., Cohn S. A., Spurck T. P. Microtubule dynamics in the spindle. Theoretical aspects of assembly/disassembly reactions in vivo. J Theor Biol. 1986 Jan 21;118(2):153–169. doi: 10.1016/s0022-5193(86)80131-x. [DOI] [PubMed] [Google Scholar]
  33. Pickett-Heaps J. D., Tippit D. H., Leslie R. Light and electron microscopic observations on cell division in two large pennate diatoms. Hantzschia and Nitzschia. II. Ultrastructure. Eur J Cell Biol. 1980 Apr;21(1):12–27. [PubMed] [Google Scholar]
  34. Pickett-Heaps J. D., Tippit D. H., Porter K. R. Rethinking mitosis. Cell. 1982 Jul;29(3):729–744. doi: 10.1016/0092-8674(82)90435-4. [DOI] [PubMed] [Google Scholar]
  35. Pickett-Heaps J., Spurck T., Tippit D. Chromosome motion and the spindle matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):137s–143s. doi: 10.1083/jcb.99.1.137s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Poenie M., Alderton J., Steinhardt R., Tsien R. Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science. 1986 Aug 22;233(4766):886–889. doi: 10.1126/science.3755550. [DOI] [PubMed] [Google Scholar]
  37. Porrello K., Burnside B. Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate. J Cell Biol. 1984 Jun;98(6):2230–2238. doi: 10.1083/jcb.98.6.2230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rieder C. L. Effect of hypothermia (20-25 degrees C) on mitosis in PtK1 cells. Cell Biol Int Rep. 1981 Jun;5(6):563–573. doi: 10.1016/s0309-1651(81)80007-0. [DOI] [PubMed] [Google Scholar]
  39. Rieder C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
  40. Rozdzial M. M., Haimo L. T. Reactivated melanophore motility: differential regulation and nucleotide requirements of bidirectional pigment granule transport. J Cell Biol. 1986 Dec;103(6 Pt 2):2755–2764. doi: 10.1083/jcb.103.6.2755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Salmon E. D., Begg D. A. Functional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase. J Cell Biol. 1980 Jun;85(3):853–865. doi: 10.1083/jcb.85.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Salmon E. D. Mitotic spindles isolated from sea urchin eggs with EGTA lysis buffers. Methods Cell Biol. 1982;25(Pt B):69–105. doi: 10.1016/s0091-679x(08)61421-1. [DOI] [PubMed] [Google Scholar]
  43. Salmon E. D. Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length. J Cell Biol. 1975 Jun;65(3):603–614. doi: 10.1083/jcb.65.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Salmon E. D., Segall R. R. Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus). J Cell Biol. 1980 Aug;86(2):355–365. doi: 10.1083/jcb.86.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Scarcello L. A., Janicke M. A., LaFountain J. R., Jr Kinetochore microtubules in crane-fly spermatocytes: untreated, 2 degrees C-treated, and 6 degrees C-grown spindles. Cell Motil Cytoskeleton. 1986;6(4):428–438. doi: 10.1002/cm.970060408. [DOI] [PubMed] [Google Scholar]
  46. Stanley K. K., Edwards M. R., Luzio J. P. Subcellular distribution and movement of 5'-nucleotidase in rat cells. Biochem J. 1980 Jan 15;186(1):59–69. doi: 10.1042/bj1860059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stearns M. E., Ochs R. L. A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores. J Cell Biol. 1982 Sep;94(3):727–739. doi: 10.1083/jcb.94.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tippit D. H., Pickett-Heaps J. D., Leslie R. Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase. J Cell Biol. 1980 Aug;86(2):402–416. doi: 10.1083/jcb.86.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Weisenberg R. C., Deery W. J. The mechanism of calcium-induced microtubule disassembly. Biochem Biophys Res Commun. 1981 Oct 15;102(3):924–931. doi: 10.1016/0006-291x(81)91626-0. [DOI] [PubMed] [Google Scholar]
  51. Wick S. M., Hepler P. K. Localization of Ca++-containing antimonate precipitates during mitosis. J Cell Biol. 1980 Aug;86(2):500–513. doi: 10.1083/jcb.86.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wise D. On the mechanism of prometaphase congression: chromosome velocity as a function of position on the spindle. Chromosoma. 1978 Nov 22;69(2):231–241. doi: 10.1007/BF00329921. [DOI] [PubMed] [Google Scholar]
  53. Wolniak S. M., Bart K. M. Nifedipine reversibly arrests mitosis in stamen hair cells of tradescantia. Eur J Cell Biol. 1986 Jan;39(2):273–277. [PubMed] [Google Scholar]
  54. Wolniak S. M., Bart K. M. The buffering of calcium with quin2 reversibly forestalls anaphase onset in stamen hair cells of Tradescantia. Eur J Cell Biol. 1985 Nov;39(1):33–40. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES