Abstract
Specific effects of both in vivo activation and in vitro activation by cAMP-dependent phosphorylation on bending wave parameters of demembranated, reactivated, tunicate (Ciona intestinalis) and sea urchin (Lytechinus pictus) sperm flagella can be reversed by exposure to protein phosphatase. The effects of protein phosphatase incubation can be imitated by inclusion of LiCl in the reactivation solutions. The primary effect of cAMP-dependent phosphorylation appears to be activation of a regulatory mechanism controlling flagellar oscillation, rather than activation of the active sliding mechanism. Lithium appears to act on the same regulatory mechanism.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brokaw C. J. Activation and reactivation of Ciona spermatozoa. Prog Clin Biol Res. 1982;80:185–189. doi: 10.1002/cm.970020735. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Automated methods for estimation of sperm flagellar bending parameters. Cell Motil. 1984;4(6):417–430. doi: 10.1002/cm.970040603. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified. Biophys J. 1985 Oct;48(4):633–642. doi: 10.1016/S0006-3495(85)83819-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Cyclic AMP-dependent activation of sea urchin and tunicate sperm motility. Ann N Y Acad Sci. 1984;438:132–141. doi: 10.1111/j.1749-6632.1984.tb38282.x. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Flagellar movement: a sliding filament model. Science. 1972 Nov 3;178(4060):455–462. doi: 10.1126/science.178.4060.455. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Nagayama S. M. Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin. J Cell Biol. 1985 Jun;100(6):1875–1883. doi: 10.1083/jcb.100.6.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Sperm motility. Methods Cell Biol. 1986;27:41–56. [PubMed] [Google Scholar]
- Carter S. G., Karl D. W. Inorganic phosphate assay with malachite green: an improvement and evaluation. J Biochem Biophys Methods. 1982 Dec;7(1):7–13. doi: 10.1016/0165-022x(82)90031-8. [DOI] [PubMed] [Google Scholar]
- Christen R., Schackmann R. W., Shapiro B. M. Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J Biol Chem. 1982 Dec 25;257(24):14881–14890. [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Lithium reversibly inhibits microtubule-based motility in sperm flagella. Nature. 1984 Jun 7;309(5968):560–562. doi: 10.1038/309560a0. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H. Intermittent swimming in live sea urchin sperm. J Cell Biol. 1980 Jan;84(1):1–12. doi: 10.1083/jcb.84.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishiguro K., Murofushi H., Sakai H. Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of triton X-100 models of sea urchin and starfish spermatozoa. J Cell Biol. 1982 Mar;92(3):777–782. doi: 10.1083/jcb.92.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson C. H., Clapper D. L., Winkler M. M., Lee H. C., Epel D. A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev Biol. 1983 Aug;98(2):493–501. doi: 10.1016/0012-1606(83)90378-0. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Johnson C., Epel D. Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol. 1983 Jan;95(1):31–45. doi: 10.1016/0012-1606(83)90004-0. [DOI] [PubMed] [Google Scholar]
- Lindemann C. B. A cAMP-induced increase in the motility of demembranated bull sperm models. Cell. 1978 Jan;13(1):9–18. doi: 10.1016/0092-8674(78)90133-2. [DOI] [PubMed] [Google Scholar]
- Morisawa M., Okuno M. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility. Nature. 1982 Feb 25;295(5851):703–704. doi: 10.1038/295703a0. [DOI] [PubMed] [Google Scholar]
- Murofushi H., Ishiguro K., Takahashi D., Ikeda J., Sakai H. Regulation of sperm flagellar movement by protein phosphorylation and dephosphorylation. Cell Motil Cytoskeleton. 1986;6(2):83–88. doi: 10.1002/cm.970060203. [DOI] [PubMed] [Google Scholar]
- Okuno M., Brokaw C. J. Inhibition of movement of trition-demembranated sea-urchin sperm flagella by Mg2+, ATP4-, ADP and P1. J Cell Sci. 1979 Aug;38:105–123. doi: 10.1242/jcs.38.1.105. [DOI] [PubMed] [Google Scholar]
- Silberman S. R., Speth M., Nemani R., Ganapathi M. K., Dombradi V., Paris H., Lee E. Y. Isolation and characterization of rabbit skeletal muscle protein phosphatases C-I and C-II. J Biol Chem. 1984 Mar 10;259(5):2913–2922. [PubMed] [Google Scholar]
- Takahashi D., Murofushi H., Ishiguro K., Ikeda J., Sakai H. Phosphoprotein phosphatase inhibits flagellar movement of Triton models of sea urchin spermatozoa. Cell Struct Funct. 1985 Dec;10(4):327–337. doi: 10.1247/csf.10.327. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Kakar S. S., Means A. R. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin. Cell. 1984 Sep;38(2):551–559. doi: 10.1016/0092-8674(84)90509-9. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod. 1983 Feb;28(1):75–104. doi: 10.1095/biolreprod28.1.75. [DOI] [PubMed] [Google Scholar]
