Abstract
Vertebrate oxyntic cells, responsible for gastric HCl production, undergo a remarkable morphological reorganization in relation to their secretory cycle. In resting state, the luminal surface of the cells is smooth; a peculiar system of endocellular membranes, the tubular system, occupies the luminal cytoplasm. Actin filaments frame a cortical network between the tubular system and the luminal plasma membrane. With the onset of HCl secretion, the tubular system becomes incorporated into the luminal plasma membrane. Villous processes containing microfilaments fill the secretory surface. This morphological reorganization of membranes and cytoskeletal matrix could regulate HCl secretion by translocation of membranes containing the proton pump from the endocellular compartment to the secretory surface. In this paper, we describe the isolation of membranes that selectively belong to the tubular system or to the cytoplasmic processes of the secretory surface of chicken oxyntic cells. Chicken oxyntic cells are the main cellular component of the proventricular glands. A resting state was obtained after cimetidine treatment, whereas the HCl- secretory state was induced by histamine. We present a comparative analysis of resting and stimulated chicken gastric glands by quantitative subcellular fractionation. The HCl secretory state was related to specific modifications in membrane fractions derived from the secretory pole of oxyntic cells. Morphological and functional reorganization of oxyntic cells was closely correlated with changes in: the sedimentation pattern of the marker enzyme of the apical pole membrane (K-NPPase), the total activity of K-NPPase and nonmitochondrial Mg-ATPase, the valinomycin dependence of K-ATPase, and polypeptides that cosediment in purified membrane fractions. Changes in the distribution pattern of K-NPPase after fractionation of histamine- stimulated glands were consistent with the replacement of the small vesicles typical of resting glands by dense membrane profiles, analogous to the luminal processes of stimulated oxyntic cells. SDS- PAGE showed that, in purified membrane fractions of stimulated glands, the concentration of 28-, 43-, and 200-kD polypeptides increased while that of 95- and 250-kD polypeptides decreased. The present results define the tubular system of oxyntic cells as an organelle with properties different from those of endoplasmic reticulum, mitochondria, and plasma membrane. The biochemical and physico-chemical properties of this membraneous system changed when the organization of the membranes and the cytoskeletal matrix of the apical pole was modified by the onset of HCl secretion.
Full Text
The Full Text of this article is available as a PDF (4.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaufay H., Amar-Costesec A., Feytmans E., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol. 1974 Apr;61(1):188–200. doi: 10.1083/jcb.61.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett H., Condeelis J. Decoration with myosin subfragment-1 disrupts contacts between microfilaments and the cell membrane in isolated Dictyostelium cortices. J Cell Biol. 1984 Oct;99(4 Pt 1):1434–1440. doi: 10.1083/jcb.99.4.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berglindh T. The mammalian gastric parietal cell in vitro. Annu Rev Physiol. 1984;46:377–392. doi: 10.1146/annurev.ph.46.030184.002113. [DOI] [PubMed] [Google Scholar]
- Black J. A., Forte T. M., Forte J. G. The effects of microfilament disrupting agents on HCl secretion and ultrastructure of piglet gastric oxyntic cells. Gastroenterology. 1982 Sep;83(3):595–604. [PubMed] [Google Scholar]
- Bronfman M., Beaufay H. Alteration of subcellular organelles induced by compression. FEBS Lett. 1973 Oct 15;36(2):163–168. doi: 10.1016/0014-5793(73)80360-6. [DOI] [PubMed] [Google Scholar]
- Bronfman M., Inestrosa N. C., Nervi F. O., Leighton F. Acyl-CoA synthetase and the peroxisomal enzymes of beta-oxidation in human liver. Quantitative analysis of their subcellular localization. Biochem J. 1984 Dec 15;224(3):709–720. doi: 10.1042/bj2240709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunschwig J. P., Brandt N., Caswell A. H., Lukeman D. S. Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordanting. J Cell Biol. 1982 Jun;93(3):533–542. doi: 10.1083/jcb.93.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burhol P. G. Regulation of gastric secretion in the chicken. Scand J Gastroenterol. 1982 Apr;17(3):321–323. doi: 10.3109/00365528209182061. [DOI] [PubMed] [Google Scholar]
- COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dabiké M., Munizaga A., Koenig C. S. Filamin and myosin are present in the secretory pole of amphibian oxyntic cells. An immunofluorescence study. Eur J Cell Biol. 1986 Apr;40(2):185–194. [PubMed] [Google Scholar]
- Diamond J. M., Machen T. E. Impedance analysis in epithelia and the problem of gastric acid secretion. J Membr Biol. 1983;72(1-2):17–41. doi: 10.1007/BF01870312. [DOI] [PubMed] [Google Scholar]
- Fellenius E., Berglindh T., Sachs G., Olbe L., Elander B., Sjöstrand S. E., Wallmark B. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H+ + K+)ATPase. Nature. 1981 Mar 12;290(5802):159–161. doi: 10.1038/290159a0. [DOI] [PubMed] [Google Scholar]
- Forte J. G., Black J. A., Forte T. M., Machen T. E., Wolosin J. M. Ultrastructural changes related to functional activity in gastric oxyntic cells. Am J Physiol. 1981 Nov;241(5):G349–G358. doi: 10.1152/ajpgi.1981.241.5.G349. [DOI] [PubMed] [Google Scholar]
- Forte J. G., Ganser A., Beesley R., Forte T. M. Unique enzymes of purified microsomes from pig fundic mucosa. K+-stimulated adenosine triphosphatase and K+-stimulated pNPPase. Gastroenterology. 1975 Jul;69(1):175–189. [PubMed] [Google Scholar]
- Forte J. G., Machen T. E., Obrink K. J. Mechanisms of gastric H+ and Cl- transport. Annu Rev Physiol. 1980;42:111–126. doi: 10.1146/annurev.ph.42.030180.000551. [DOI] [PubMed] [Google Scholar]
- Forte J. G., Poulter J. L., Dykstra R., Rivas J., Lee H. C. Specific modification of gastric K+-stimulated ATPase activity by thimerosal. Biochim Biophys Acta. 1981 Jun 22;644(2):257–265. doi: 10.1016/0005-2736(81)90383-7. [DOI] [PubMed] [Google Scholar]
- Fujimoto K., Ogawa K. S., Ogawa K. Gastric K+-stimulated p-nitrophenylphosphatase cytochemistry. Histochemistry. 1986;84(4-6):600–608. doi: 10.1007/BF00482998. [DOI] [PubMed] [Google Scholar]
- Ganser A. L., Forte J. G. Ionophoretic stimulation of K+-ATPase of oxyntic cell microsomes. Biochem Biophys Res Commun. 1973 Sep 18;54(2):690–696. doi: 10.1016/0006-291x(73)91478-2. [DOI] [PubMed] [Google Scholar]
- Ganser A. L., Forte J. G. K + -stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim Biophys Acta. 1973 Apr 25;307(1):169–180. doi: 10.1016/0005-2736(73)90035-7. [DOI] [PubMed] [Google Scholar]
- Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
- González A., Garrido J., Vial J. D. Epidermal growth factor inhibits cytoskeleton-related changes in the surface of parietal cells. J Cell Biol. 1981 Jan;88(1):108–114. doi: 10.1083/jcb.88.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helander H. F., Sundell G. W. Ultrastructure of inhibited parietal cells in the rat. Gastroenterology. 1984 Nov;87(5):1064–1071. [PubMed] [Google Scholar]
- Hirst B. H., Forte J. G. Redistribution and characterization of (H+ + K+)-ATPase membranes from resting and stimulated gastric parietal cells. Biochem J. 1985 Nov 1;231(3):641–649. doi: 10.1042/bj2310641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Im W. B., Blakeman D. P., Fieldhouse J. M., Rabon E. C. Effect of carbachol or histamine stimulation on rat gastric membranes enriched in (H+-K+)-ATPase. Biochim Biophys Acta. 1984 May 16;772(2):167–175. doi: 10.1016/0005-2736(84)90040-3. [DOI] [PubMed] [Google Scholar]
- Jackson R. J., Mendlein J., Sachs G. Interaction of fluorescein isothiocyanate with the (H+ + K+)-ATPase. Biochim Biophys Acta. 1983 May 26;731(1):9–15. doi: 10.1016/0005-2736(83)90391-7. [DOI] [PubMed] [Google Scholar]
- Jacobson B. S. Interaction of the plasma membrane with the cytoskeleton: an overview. Tissue Cell. 1983;15(6):829–852. doi: 10.1016/0040-8166(83)90053-8. [DOI] [PubMed] [Google Scholar]
- Jirón C., Romano M., Michelangeli F. A study of dynamic membrane phenomena during the gastric secretory cycle: fusion, retrieval and recycling of membranes. J Membr Biol. 1984;80(2):119–134. doi: 10.1007/BF01868769. [DOI] [PubMed] [Google Scholar]
- Jung G., Helm R. M., Carraway C. A., Carraway K. L. Mechanism of concanavalin A-induced anchorage of the major cell surface glycoproteins to the submembrane cytoskeleton in 13762 ascites mammary adenocarcinoma cells. J Cell Biol. 1984 Jan;98(1):179–187. doi: 10.1083/jcb.98.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koenig C. S., Dabike M., Vial J. D. Actin and myosin in oxyntic cell. Gelation and contraction of crude extracts in vitro. Exp Cell Res. 1981 Feb;131(2):319–329. doi: 10.1016/0014-4827(81)90235-4. [DOI] [PubMed] [Google Scholar]
- Koenig C. S. Redistribution of gastric K+-NPPase in vertebrate oxyntic cells in relation to hydrochloric acid secretion: a cytochemical study. Anat Rec. 1984 Dec;210(4):583–596. doi: 10.1002/ar.1092100406. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Breitbart H., Berman M., Forte J. G. Potassium-stimulated ATPase activity and hydrogen transport in gastric microsomal vesicles. Biochim Biophys Acta. 1979 May 3;553(1):107–131. doi: 10.1016/0005-2736(79)90034-8. [DOI] [PubMed] [Google Scholar]
- Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ljungström M., Norberg L., Olaisson H., Wernstedt C., Vega F. V., Arvidson G., Mårdh S. Characterization of proton-transporting membranes from resting pig gastric mucosa. Biochim Biophys Acta. 1984 Jan 11;769(1):209–219. doi: 10.1016/0005-2736(84)90025-7. [DOI] [PubMed] [Google Scholar]
- Ljungström M., Vega F. V., Mårdh S. Effects of pH on the interaction of ligands with the (H+ + K+)-ATPase purified from pig gastric mucosa. Biochim Biophys Acta. 1984 Jan 11;769(1):220–230. doi: 10.1016/0005-2736(84)90026-9. [DOI] [PubMed] [Google Scholar]
- Long J. F. Gastric secretion in unanesthetized chickens. Am J Physiol. 1967 Jun;212(6):1303–1307. doi: 10.1152/ajplegacy.1967.212.6.1303. [DOI] [PubMed] [Google Scholar]
- Malinowska D. H., Cuppoletti J., Sachs G. Cl- requirement of acid secretion in isolated gastric glands. Am J Physiol. 1983 Oct;245(4):G573–G581. doi: 10.1152/ajpgi.1983.245.4.G573. [DOI] [PubMed] [Google Scholar]
- Mooseker M. S., Bonder E. M., Conzelman K. A., Fishkind D. J., Howe C. L., Keller T. C., 3rd Brush border cytoskeleton and integration of cellular functions. J Cell Biol. 1984 Jul;99(1 Pt 2):104s–112s. doi: 10.1083/jcb.99.1.104s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osawa S., Betz G., Hall P. F. Role of actin in the responses of adrenal cells to ACTH and cyclic AMP: inhibition by DNase I. J Cell Biol. 1984 Oct;99(4 Pt 1):1335–1342. doi: 10.1083/jcb.99.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostlund R. E., Jr, Leung J. T., Kipnis D. M. Myosins of secretory tissues. J Cell Biol. 1978 Jun;77(3):827–836. doi: 10.1083/jcb.77.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAY W. J., Jr, ROSCELLI G. A. A KINETIC STUDY OF THE PHOSPHOGLUCOMUTASE PATHWAY. J Biol Chem. 1964 Apr;239:1228–1236. [PubMed] [Google Scholar]
- Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
- Ray T. K., Forte J. G. Adenyl cyclase of oxyntic cells. Its association with different cellular membranes. Biochim Biophys Acta. 1974 Sep 23;363(3):320–339. doi: 10.1016/0005-2736(74)90072-8. [DOI] [PubMed] [Google Scholar]
- Ray T. K. Gastric K+-stimulated adenosine triphosphatase. Demonstration of an endogenous activator. FEBS Lett. 1978 Aug 1;92(1):49–52. doi: 10.1016/0014-5793(78)80719-4. [DOI] [PubMed] [Google Scholar]
- Ray T. K., Nandi J. Regulation of the gastric microsomal (H+ + K+)-transporting ATPase system by the endogenous activator. Effect of phospholipase A2 treatment. Biochem J. 1983 Jun 15;212(3):887–890. doi: 10.1042/bj2120887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saccomani G., Stewart H. B., Shaw D., Lewin M., Sachs G. Characterization of gastric mucosal membranes. IX. Fractionation and purification of K+-ATPase-containing vesicles by zonal centrifugation and free-flow electrophoresis technique. Biochim Biophys Acta. 1977 Mar 1;465(2):311–330. doi: 10.1016/0005-2736(77)90081-5. [DOI] [PubMed] [Google Scholar]
- Sachs G., Faller L. D., Rabon E. Proton/hydroxyl transport in gastric and intestinal epithelia. J Membr Biol. 1982;64(3):123–135. doi: 10.1007/BF01870878. [DOI] [PubMed] [Google Scholar]
- Smolka A., Helander H. F., Sachs G. Monoclonal antibodies against gastric H+ + K+ ATPase. Am J Physiol. 1983 Oct;245(4):G589–G596. doi: 10.1152/ajpgi.1983.245.4.G589. [DOI] [PubMed] [Google Scholar]
- TONER P. G. THE FINE STRUCTURE OF RESTING AND ACTIVE CELLS IN THE SUBMUCOSAL GLANDS OF THE FOWL PROVENTRICULUS. J Anat. 1963 Oct;97:575–583. [PMC free article] [PubMed] [Google Scholar]
- Tramontano D., Avivi A., Ambesi-Impiombato F. S., Barak L., Geiger B., Schlessinger J. Thyrotropin induces changes in the morphology and the organization of microfilament structures in cultured thyroid cells. Exp Cell Res. 1982 Feb;137(2):269–275. doi: 10.1016/0014-4827(82)90027-1. [DOI] [PubMed] [Google Scholar]
- VIAL J. D., ORREGO H. Action of 2,4-dinitrophenol and iodoacetate on the ultrastructure of the oxyntic cells. Exp Cell Res. 1963 Mar;30:232–235. doi: 10.1016/0014-4827(63)90231-3. [DOI] [PubMed] [Google Scholar]
- Vial J. D., Garrido J. Actin-like filaments amd membrane rearrangement in oxyntic cells. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4032–4036. doi: 10.1073/pnas.73.11.4032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vial J. D., Garrido J., Dabike M., Koenig C. Muscle proteins and the changes in shape of avian oxynticopeptic cells in relation to secretion. Anat Rec. 1979 Jun;194(2):293–309. doi: 10.1002/ar.1091940211. [DOI] [PubMed] [Google Scholar]
- Vial J. D., Garrido J., González A. The early changes of parietal cell structure in the course of secretory activity in the rat. Am J Anat. 1985 Apr;172(4):291–306. doi: 10.1002/aja.1001720404. [DOI] [PubMed] [Google Scholar]
- Wallmark B., Jaresten B. M., Larsson H., Ryberg B., Brändström A., Fellenius E. Differentiation among inhibitory actions of omeprazole, cimetidine, and SCN- on gastric acid secretion. Am J Physiol. 1983 Jul;245(1):G64–G71. doi: 10.1152/ajpgi.1983.245.1.G64. [DOI] [PubMed] [Google Scholar]
- Wallmark B., Stewart H. B., Rabon E., Saccomani G., Sachs G. The catalytic cycle of gastric (H+ + K+)-ATPase. J Biol Chem. 1980 Jun 10;255(11):5313–5319. [PubMed] [Google Scholar]
- Wattiaux R., Wattiaux-De Coninck S., Ronveaux-dupal M. F., Dubois F. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol. 1978 Aug;78(2):349–368. doi: 10.1083/jcb.78.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolosin J. M., Forte J. G. Changes in the membrane environment of the (K+ + H+)-ATPase following stimulation of the gastric oxyntic cell. J Biol Chem. 1981 Apr 10;256(7):3149–3152. [PubMed] [Google Scholar]
- Wolosin J. M., Forte J. G. Functional differences between K+-ATPase rich membranes isolated from resting or stimulated rabbit fundic mucosa. FEBS Lett. 1981 Mar 23;125(2):208–212. doi: 10.1016/0014-5793(81)80720-x. [DOI] [PubMed] [Google Scholar]
- Wolosin J. M., Forte J. G. Kinetic properties of the KCl transport at the secreting apical membrane of the oxyntic cell. J Membr Biol. 1983;71(3):195–207. doi: 10.1007/BF01875461. [DOI] [PubMed] [Google Scholar]
