Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Dec 1;105(6):2959–2971. doi: 10.1083/jcb.105.6.2959

Regulation of the affinity state of the N-formylated peptide receptor of neutrophils: role of guanine nucleotide-binding proteins and the cytoskeleton

PMCID: PMC2114737  PMID: 3121639

Abstract

Previous studies have indicated that the receptor for N-formylated peptides present on human neutrophils can exist in several ligand- dissociation states at least one of which is sensitive to guanine nucleotides. Human neutrophil membranes rich in cell surface enzyme markers have been isolated from cells pretreated at 37 degrees C with 5 nM fluoresceinated chemotactic peptide (N-formyl-Nle-Leu-Phe-Nle-Tyr- Lys-fluorescein; Fl-peptide) or a buffer control and analyzed for receptor-ligand dissociation states using a previously published fluorescence assay for estimating ligand binding and dissociation rates (Sklar, L. A., et al. 1984. J. Biol. Chem. 259:5661-5669). Fractionation of crude microsomes derived from homogenates of unstimulated cells by ultracentrifugation on linear D2O gradients yielded two plasma membrane-rich fractions termed fast and slow microsomes. Analysis of Fl-peptide dissociation rates from receptor present in fast membrane fractions of unstimulated cells yielded data that could be best fit by assuming that the receptor exists in three distinct ligand-dissociation states. The intermediate ligand- dissociation state (state B) accounted for 47% of the total and was converted to the fastest ligand-dissociation state (state A) by incubation of membranes with GTP or GTP-gamma-S. The remainder of the receptor (17%) present in unstimulated membranes was in a state from which ligand was virtually nondissociable (state C). This form of the receptor was insensitive to GTP-gamma-S. When cells were stimulated with Fl-peptide, most of the receptor present in slow and fast membranes was of the state C type. In contrast to unstimulated cells, slow membranes derived from cells exposed to Fl-peptide contained the majority of the recoverable receptor indicating that receptor was transferred to a physically isolatable membrane domain after ligand binding to the intact cell. The ligand-induced formation of state C in both fast and slow microsome fractions was inhibited by treatment of cells with dihydrocytochalasin B. However, the drug had no effect on translocation of the receptor to slow membranes. Pertussis toxin treatment of intact cells had no effect on ligand-induced formation of state C in either fraction even though other cellular responses were inhibited. Both slow and fast membranes contained a 41-kD G protein as assayed by immunoblot analysis. The data suggest that ligand induces a segregation of receptor-ligand complexes into a membrane domain in which the receptor is functionally uncoupled from the 41-kD neutrophil G protein.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. A., Jesaitis A. J., Sklar L. A., Cochrane C. G., Painter R. G. Physicochemical properties of the N-formyl peptide receptor on human neutrophils. J Biol Chem. 1986 Feb 5;261(4):1854–1857. [PubMed] [Google Scholar]
  2. Allen R. A., Tolley J. O., Jesaitis A. J. Preparation and properties of an improved photoaffinity ligand for the N-formyl peptide receptor. Biochim Biophys Acta. 1986 Jul 16;882(3):271–280. doi: 10.1016/0304-4165(86)90248-5. [DOI] [PubMed] [Google Scholar]
  3. Backlund P. S., Jr, Meade B. D., Manclark C. R., Cantoni G. L., Aksamit R. R. Pertussis toxin inhibition of chemotaxis and the ADP-ribosylation of a membrane protein in a human-mouse hybrid cell line. Proc Natl Acad Sci U S A. 1985 May;82(9):2637–2641. doi: 10.1073/pnas.82.9.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldwin J. M., Bennett J. P., Gomperts B. D. Detergent solubilisation of the rabbit neutrophil receptor for chemotactic formyl peptides. Eur J Biochem. 1983 Oct 3;135(3):515–518. doi: 10.1111/j.1432-1033.1983.tb07682.x. [DOI] [PubMed] [Google Scholar]
  5. Baxter A., Durham J. P. A rapid, sensitive disk assay for the determination of glycoprotein glycosyltransferases. Anal Biochem. 1979 Sep 15;98(1):95–101. doi: 10.1016/0003-2697(79)90711-5. [DOI] [PubMed] [Google Scholar]
  6. Becker E. L., Kermode J. C., Naccache P. H., Yassin R., Marsh M. L., Munoz J. J., Sha'afi R. I. The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin. J Cell Biol. 1985 May;100(5):1641–1646. doi: 10.1083/jcb.100.5.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bokoch G. M., Gilman A. G. Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell. 1984 Dec;39(2 Pt 1):301–308. doi: 10.1016/0092-8674(84)90008-4. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Brandt S. J., Dougherty R. W., Lapetina E. G., Niedel J. E. Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells. Proc Natl Acad Sci U S A. 1985 May;82(10):3277–3280. doi: 10.1073/pnas.82.10.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carlson K. E., Woolkalis M. J., Newhouse M. G., Manning D. R. Fractionation of the beta subunit common to guanine nucleotide-binding regulatory proteins with the cytoskeleton. Mol Pharmacol. 1986 Nov;30(5):463–468. [PubMed] [Google Scholar]
  11. Carson M., Weber A., Zigmond S. H. An actin-nucleating activity in polymorphonuclear leukocytes is modulated by chemotactic peptides. J Cell Biol. 1986 Dec;103(6 Pt 2):2707–2714. doi: 10.1083/jcb.103.6.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cockcroft S., Gomperts B. D. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature. 1985 Apr 11;314(6011):534–536. doi: 10.1038/314534a0. [DOI] [PubMed] [Google Scholar]
  13. Davis B. H., Walter R. J., Pearson C. B., Becker E. L., Oliver J. M. Membrane activity and topography of F-Met-Leu-Phe-Treated polymorphonuclear leukocytes. Acute and sustained responses to chemotactic peptide. Am J Pathol. 1982 Aug;108(2):206–216. [PMC free article] [PubMed] [Google Scholar]
  14. De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
  15. Fechheimer M., Zigmond S. H. Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil. 1983;3(4):349–361. doi: 10.1002/cm.970030406. [DOI] [PubMed] [Google Scholar]
  16. Fletcher M. P., Gallin J. I. Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant N-formyl-methionyl-leucyl-phenylalanine. Blood. 1983 Oct;62(4):792–799. [PubMed] [Google Scholar]
  17. Fung B. K., Hurley J. B., Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A. 1981 Jan;78(1):152–156. doi: 10.1073/pnas.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  19. Goetzl E. J., Foster D. W., Goldman D. W. Isolation and partial characterization of membrane protein constituents of human neutrophil receptors for chemotactic formylmethionyl peptides. Biochemistry. 1981 Sep 29;20(20):5717–5722. doi: 10.1021/bi00523a013. [DOI] [PubMed] [Google Scholar]
  20. Goldman D. W., Chang F. H., Gifford L. A., Goetzl E. J., Bourne H. R. Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes. J Exp Med. 1985 Jul 1;162(1):145–156. doi: 10.1084/jem.162.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henson P. M., Oades Z. G. Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates. Secretion of granule constituents and increased oxidation of glucose. J Clin Invest. 1975 Oct;56(4):1053–1061. doi: 10.1172/JCI108152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Howard T. H., Meyer W. H. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J Cell Biol. 1984 Apr;98(4):1265–1271. doi: 10.1083/jcb.98.4.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hoyle P. C., Freer R. J. Isolation and reconstitution of the N-formylpeptide receptor from HL-60 derived neutrophils. FEBS Lett. 1984 Feb 27;167(2):277–280. doi: 10.1016/0014-5793(84)80142-8. [DOI] [PubMed] [Google Scholar]
  24. Huang C. K., Hill J. M., Jr, Bormann B. J., Mackin W. M., Becker E. L. Chemotactic factors induced vimentin phosphorylation in rabbit peritoneal neutrophil. J Biol Chem. 1984 Feb 10;259(3):1386–1389. [PubMed] [Google Scholar]
  25. Jesaitis A. J., Naemura J. R., Painter R. G., Sklar L. A., Cochrane C. G. The fate of an N-formylated chemotactic peptide in stimulated human granulocytes. Subcellular fractionation studies. J Biol Chem. 1983 Feb 10;258(3):1968–1977. [PubMed] [Google Scholar]
  26. Jesaitis A. J., Naemura J. R., Sklar L. A., Cochrane C. G., Painter R. G. Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: formation of high-affinity ligand-receptor complexes in transient association with cytoskeleton. J Cell Biol. 1984 Apr;98(4):1378–1387. doi: 10.1083/jcb.98.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jesaitis A. J., Tolley J. O., Painter R. G., Sklar L. A., Cochrane C. G. Membrane-cytoskeleton interactions and the regulation of chemotactic peptide-induced activation of human granulocytes: the effects of dihydrocytochalasin B. J Cell Biochem. 1985;27(3):241–253. doi: 10.1002/jcb.240270306. [DOI] [PubMed] [Google Scholar]
  28. Koo C., Lefkowitz R. J., Snyderman R. Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes. J Clin Invest. 1983 Sep;72(3):748–753. doi: 10.1172/JCI111045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Korchak H. M., Rutherford L. E., Weissmann G. Stimulus response coupling in the human neutrophil. I. Kinetic analysis of changes in calcium permeability. J Biol Chem. 1984 Apr 10;259(7):4070–4075. [PubMed] [Google Scholar]
  30. Korchak H. M., Vienne K., Rutherford L. E., Wilkenfeld C., Finkelstein M. C., Weissmann G. Stimulus response coupling in the human neutrophil. II. Temporal analysis of changes in cytosolic calcium and calcium efflux. J Biol Chem. 1984 Apr 10;259(7):4076–4082. [PubMed] [Google Scholar]
  31. Krause K. H., Schlegel W., Wollheim C. B., Andersson T., Waldvogel F. A., Lew P. D. Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients, and cellular activation. J Clin Invest. 1985 Oct;76(4):1348–1354. doi: 10.1172/JCI112109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lad P. M., Olson C. V., Smiley P. A. Association of the N-formyl-Met-Leu-Phe receptor in human neutrophils with a GTP-binding protein sensitive to pertussis toxin. Proc Natl Acad Sci U S A. 1985 Feb;82(3):869–873. doi: 10.1073/pnas.82.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Levitzki A. Beta-adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol Rev. 1986 Jul;66(3):819–854. doi: 10.1152/physrev.1986.66.3.819. [DOI] [PubMed] [Google Scholar]
  34. Malech H. L., Gardner J. P., Heiman D. F., Rosenzweig S. A. Asparagine-linked oligosaccharides on formyl peptide chemotactic receptors of human phagocytic cells. J Biol Chem. 1985 Feb 25;260(4):2509–2514. [PubMed] [Google Scholar]
  35. Manning D. R., Gilman A. G. The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J Biol Chem. 1983 Jun 10;258(11):7059–7063. [PubMed] [Google Scholar]
  36. Marasco W. A., Becker K. M., Feltner D. E., Brown C. S., Ward P. A., Nairn R. Covalent affinity labeling, detergent solubilization, and fluid-phase characterization of the rabbit neutrophil formyl peptide chemotaxis receptor. Biochemistry. 1985 Apr 23;24(9):2227–2236. doi: 10.1021/bi00330a017. [DOI] [PubMed] [Google Scholar]
  37. McNeil P. L., Kennedy A. L., Waggoner A. S., Taylor D. L., Murphy R. F. Light-scattering changes during chemotactic stimulation of human neutrophils: kinetics followed by flow cytometry. Cytometry. 1985 Jan;6(1):7–12. doi: 10.1002/cyto.990060103. [DOI] [PubMed] [Google Scholar]
  38. McPherson G. A. Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods. 1985 Nov;14(3):213–228. doi: 10.1016/0160-5402(85)90034-8. [DOI] [PubMed] [Google Scholar]
  39. Molski T. F., Naccache P. H., Marsh M. L., Kermode J., Becker E. L., Sha'afi R. I. Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the "G proteins" in calcium mobilization. Biochem Biophys Res Commun. 1984 Oct 30;124(2):644–650. doi: 10.1016/0006-291x(84)91603-6. [DOI] [PubMed] [Google Scholar]
  40. Mumby S. M., Kahn R. A., Manning D. R., Gilman A. G. Antisera of designed specificity for subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci U S A. 1986 Jan;83(2):265–269. doi: 10.1073/pnas.83.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Niedel J., Davis J., Cuatrecasas P. Covalent affinity labeling of the formyl peptide chemotactic receptor. J Biol Chem. 1980 Aug 10;255(15):7063–7066. [PubMed] [Google Scholar]
  42. Niedel J. Detergent solubilization of the formyl peptide chemotactic receptor. Strategy based on covalent affinity labeling. J Biol Chem. 1981 Sep 10;256(17):9295–9299. [PubMed] [Google Scholar]
  43. Niedel J., Wilkinson S., Cuatrecasas P. Receptor-mediated uptake and degradation of 125I-chemotactic peptide by human neutrophils. J Biol Chem. 1979 Nov 10;254(21):10700–10706. [PubMed] [Google Scholar]
  44. Okajima F., Ui M. ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2+-mobilizing biosignaling. J Biol Chem. 1984 Nov 25;259(22):13863–13871. [PubMed] [Google Scholar]
  45. Painter R. G., Prodouz K. N., Gaarde W. Isolation of a subpopulation of glycoprotein IIb-III from platelet membranes that is bound to membrane actin. J Cell Biol. 1985 Feb;100(2):652–657. doi: 10.1083/jcb.100.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Painter R. G., Schmitt M., Jesaitis A. J., Sklar L. A., Preissner K., Cochrane C. G. Photoaffinity labeling of the N-formyl peptide receptor of human polymorphonuclear leukocytes. J Cell Biochem. 1982;20(2):203–214. doi: 10.1002/jcb.240200211. [DOI] [PubMed] [Google Scholar]
  47. Pearse B. M. Isolation of coated vesicles. Methods Enzymol. 1983;98:320–326. doi: 10.1016/0076-6879(83)98160-0. [DOI] [PubMed] [Google Scholar]
  48. Rao K. M., Varani J. Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils. J Immunol. 1982 Oct;129(4):1605–1607. [PubMed] [Google Scholar]
  49. Ribeiro-Neto F. A., Mattera R., Hildebrandt J. D., Codina J., Field J. B., Birnbaumer L., Sekura R. D. ADP-ribosylation of membrane components by pertussis and cholera toxin. Methods Enzymol. 1985;109:566–572. doi: 10.1016/0076-6879(85)09115-7. [DOI] [PubMed] [Google Scholar]
  50. Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schmitt M., Painter R. G., Jesaitis A. J., Preissner K., Sklar L. A., Cochrane C. G. Photoaffinity labeling of the N-formyl peptide receptor binding site of intact human polymorphonuclear leukocytes. A label suitable for following the fate of the receptor-ligand complex. J Biol Chem. 1983 Jan 10;258(1):649–654. [PubMed] [Google Scholar]
  52. Seligmann B. E., Fletcher M. P., Gallin J. I. Adaptation of human neutrophil responsiveness to the chemoattractant N-formylmethionylleucylphenylalanine. Heterogeneity and/or negative cooperative interaction of receptors. J Biol Chem. 1982 Jun 10;257(11):6280–6286. [PubMed] [Google Scholar]
  53. Shefcyk J., Yassin R., Volpi M., Molski T. F., Naccache P. H., Munoz J. J., Becker E. L., Feinstein M. B., Sha'afi R. I. Pertussis but not cholera toxin inhibits the stimulated increase in actin association with the cytoskeleton in rabbit neutrophils: role of the "G proteins" in stimulus-response coupling. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1174–1181. doi: 10.1016/0006-291x(85)90309-2. [DOI] [PubMed] [Google Scholar]
  54. Sibley D. R., Lefkowitz R. J. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature. 1985 Sep 12;317(6033):124–129. doi: 10.1038/317124a0. [DOI] [PubMed] [Google Scholar]
  55. Sklar L. A., Bokoch G. M., Button D., Smolen J. E. Regulation of ligand-receptor dynamics by guanine nucleotides. Real-time analysis of interconverting states for the neutrophil formyl peptide receptor. J Biol Chem. 1987 Jan 5;262(1):135–139. [PubMed] [Google Scholar]
  56. Sklar L. A., Finney D. A., Oades Z. G., Jesaitis A. J., Painter R. G., Cochrane C. G. The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol Chem. 1984 May 10;259(9):5661–5669. [PubMed] [Google Scholar]
  57. Sklar L. A., Hyslop P. A., Oades Z. G., Omann G. M., Jesaitis A. J., Painter R. G., Cochrane C. G. Signal transduction and ligand-receptor dynamics in the human neutrophil. Transient responses and occupancy-response relations at the formyl peptide receptor. J Biol Chem. 1985 Sep 25;260(21):11461–11467. [PubMed] [Google Scholar]
  58. Sklar L. A., Jesaitis A. J., Painter R. G. The neutrophil N-formyl peptide receptor: dynamics of ligand-receptor interactions and their relationship to cellular responses. Contemp Top Immunobiol. 1984;14:29–82. doi: 10.1007/978-1-4757-4862-8_2. [DOI] [PubMed] [Google Scholar]
  59. Sklar L. A., Oades Z. G., Finney D. A. Neutrophil degranulation detected by right angle light scattering: spectroscopic methods suitable for simultaneous analyses of degranulation or shape change, elastase release, and cell aggregation. J Immunol. 1984 Sep;133(3):1483–1487. [PubMed] [Google Scholar]
  60. Sklar L. A., Oades Z. G., Jesaitis A. J., Painter R. G., Cochrane C. G. Fluoresceinated chemotactic peptide and high-affinity antifluorescein antibody as a probe of the temporal characteristics of neutrophil stimulation. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7540–7544. doi: 10.1073/pnas.78.12.7540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Sklar L. A., Omann G. M., Painter R. G. Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular Ca++. J Cell Biol. 1985 Sep;101(3):1161–1166. doi: 10.1083/jcb.101.3.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Smigel M., Katada T., Northup J. K., Bokoch G. M., Ui M., Gilman A. G. Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:1–18. [PubMed] [Google Scholar]
  63. Smith C. D., Lane B. C., Kusaka I., Verghese M. W., Snyderman R. Chemoattractant receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes. Requirement for a guanine nucleotide regulatory protein. J Biol Chem. 1985 May 25;260(10):5875–5878. [PubMed] [Google Scholar]
  64. Smolen J. E., Stoehr S. J., Boxer L. A. Human neutrophils permeabilized with digitonin respond with lysosomal enzyme release when exposed to micromolar levels of free calcium. Biochim Biophys Acta. 1986 Apr 8;886(1):1–17. doi: 10.1016/0167-4889(86)90205-3. [DOI] [PubMed] [Google Scholar]
  65. Snyderman R., Pike M. C., Edge S., Lane B. A chemoattractant receptor on macrophages exists in two affinity states regulated by guanine nucleotides. J Cell Biol. 1984 Feb;98(2):444–448. doi: 10.1083/jcb.98.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Snyderman R., Pike M. C. Transductional mechanisms of chemoattractant receptors on leukocytes. Contemp Top Immunobiol. 1984;14:1–28. doi: 10.1007/978-1-4757-4862-8_1. [DOI] [PubMed] [Google Scholar]
  67. Sullivan S. J., Zigmond S. H. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes. J Cell Biol. 1980 Jun;85(3):703–711. doi: 10.1083/jcb.85.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Volpi M., Naccache P. H., Molski T. F., Shefcyk J., Huang C. K., Marsh M. L., Munoz J., Becker E. L., Sha'afi R. I. Pertussis toxin inhibits fMet-Leu-Phe- but not phorbol ester-stimulated changes in rabbit neutrophils: role of G proteins in excitation response coupling. Proc Natl Acad Sci U S A. 1985 May;82(9):2708–2712. doi: 10.1073/pnas.82.9.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Waldo G. L., Northup J. K., Perkins J. P., Harden T. K. Characterization of an altered membrane form of the beta-adrenergic receptor produced during agonist-induced desensitization. J Biol Chem. 1983 Nov 25;258(22):13900–13908. [PubMed] [Google Scholar]
  70. Wallace P. J., Wersto R. P., Packman C. H., Lichtman M. A. Chemotactic peptide-induced changes in neutrophil actin conformation. J Cell Biol. 1984 Sep;99(3):1060–1065. doi: 10.1083/jcb.99.3.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. White J. R., Naccache P. H., Sha'afi R. I. Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J Biol Chem. 1983 Nov 25;258(22):14041–14047. [PubMed] [Google Scholar]
  72. Yuli I., Snyderman R. Rapid changes in light scattering from human polymorphonuclear leukocytes exposed to chemoattractants. Discrete responses correlated with chemotactic and secretory functions. J Clin Invest. 1984 May;73(5):1408–1417. doi: 10.1172/JCI111345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Zigmond S. H., Sullivan S. J., Lauffenburger D. A. Kinetic analysis of chemotactic peptide receptor modulation. J Cell Biol. 1982 Jan;92(1):34–43. doi: 10.1083/jcb.92.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Zigmond S. H., Sullivan S. J. Sensory adaptation of leukocytes to chemotactic peptides. J Cell Biol. 1979 Aug;82(2):517–527. doi: 10.1083/jcb.82.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES