Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Aug 1;105(2):755–760. doi: 10.1083/jcb.105.2.755

Micrometer-scale domains in fibroblast plasma membranes

PMCID: PMC2114748  PMID: 3624308

Abstract

We have used the technique of fluorescence photobleaching recovery to measure the lateral diffusion coefficients and the mobile fractions of a fluorescent lipid probe, 1-acyl-2-(12-[(7-nitro-2-1, 3-benzoxadiazol- 4-yl)aminododecanoyl]) phosphatidylcholine (NBD-PC), and of labeled membrane proteins of human fibroblasts. Values for mobile fractions decrease monotonically with increasing size of the laser spot used for the measurements, over a range of 0.35-5.0 microns. Values for NBD-PC diffusion coefficients increase in part of this range to reach a plateau at larger laser spots. This variation is not an artifact of the measuring system, since the effects are not seen if diffusion of the probe is measured in liposomes. We also find that the distribution of diffusion coefficients measured with small laser spots is heterogeneous indicating that these small spots can sample different regions of the membrane. These regions appear to differ in protein concentration. Our data strongly indicate that fibroblast surface membranes consist of protein-rich domains approximately 1 micron in diameter, embedded in a relatively protein-poor lipid continuum. These features appear in photographs of labeled cell surfaces illuminated by the expanded laser beam.

Full Text

The Full Text of this article is available as a PDF (885.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Stirling C. Distribution of transport proteins over animal cell membranes. J Membr Biol. 1984;77(3):169–186. doi: 10.1007/BF01870567. [DOI] [PubMed] [Google Scholar]
  2. Axelrod D. Cell surface heating during fluorescence photobleaching recovery experiments. Biophys J. 1977 Apr;18(1):129–131. doi: 10.1016/S0006-3495(77)85601-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devaux P. F., Seigneuret M. Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim Biophys Acta. 1985 Jun 12;822(1):63–125. doi: 10.1016/0304-4157(85)90004-8. [DOI] [PubMed] [Google Scholar]
  4. Edidin M., Zuniga M. Lateral diffusion of wild-type and mutant Ld antigens in L cells. J Cell Biol. 1984 Dec;99(6):2333–2335. doi: 10.1083/jcb.99.6.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
  6. Jacobson K., Elson E., Koppel D., Webb W. International workshop on the application of fluorescence photobleaching techniques to problems in cell biology. Fed Proc. 1983 Jan;42(1):72–79. [PubMed] [Google Scholar]
  7. Karnovsky M. J., Kleinfeld A. M., Hoover R. L., Klausner R. D. The concept of lipid domains in membranes. J Cell Biol. 1982 Jul;94(1):1–6. doi: 10.1083/jcb.94.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
  9. Klausner R. D., Wolf D. E. Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry. 1980 Dec 23;19(26):6199–6203. doi: 10.1021/bi00567a039. [DOI] [PubMed] [Google Scholar]
  10. Morrot G., Cribier S., Devaux P. F., Geldwerth D., Davoust J., Bureau J. F., Fellmann P., Herve P., Frilley B. Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6863–6867. doi: 10.1073/pnas.83.18.6863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oku N., Scheerer J. F., MacDonald R. C. Preparation of giant liposomes. Biochim Biophys Acta. 1982 Nov 22;692(3):384–388. doi: 10.1016/0005-2736(82)90388-1. [DOI] [PubMed] [Google Scholar]
  12. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shen B. W., Josephs R., Steck T. L. Ultrastructure of the intact skeleton of the human erythrocyte membrane. J Cell Biol. 1986 Mar;102(3):997–1006. doi: 10.1083/jcb.102.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  15. Wolf D. E., Edidin M., Handyside A. H. Changes in the organization of the mouse egg plasma membrane upon fertilization and first cleavage: indications from the lateral diffusion rates of fluorescent lipid analogs. Dev Biol. 1981 Jul 15;85(1):195–198. doi: 10.1016/0012-1606(81)90250-5. [DOI] [PubMed] [Google Scholar]
  16. Wolf D. E., Kinsey W., Lennarz W., Edidin M. Changes in the organization of the sea urchin egg plasma membrane upon fertilization: indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev Biol. 1981 Jan 15;81(1):133–138. doi: 10.1016/0012-1606(81)90355-9. [DOI] [PubMed] [Google Scholar]
  17. Wolf D. E. Overcoming random diffusion in polarized cells--corralling the drunken beggar. Bioessays. 1987 Mar;6(3):116–121. doi: 10.1002/bies.950060306. [DOI] [PubMed] [Google Scholar]
  18. Yechiel E., Barenholz Y., Henis Y. I. Lateral mobility and organization of phospholipids and proteins in rat myocyte membranes. Effects of aging and manipulation of lipid composition. J Biol Chem. 1985 Aug 5;260(16):9132–9136. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES