Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Aug 1;105(2):737–746. doi: 10.1083/jcb.105.2.737

Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes

PMCID: PMC2114756  PMID: 3624307

Abstract

African trypanosomes contain a membrane-bound enzyme capable of removing dimyristylglycerol from the membrane-attached form of the variable surface glycoprotein (mfVSG; Ferguson, M. A. J., K. Halder, and G. A. M. Cross, 1985, J. Biol Chem., 260:4963-4968). Although mfVSG phospholipase-C has been implicated in the removal of the VSG from the trypanosome surface (Cardoso de Almeida, M. L., and M. J. Turner, 1983, Nature (Lond.)., 302:349-352; Ferguson, M. A. J., K. Halder, and G. A. M. Cross, 1985, J. Biol Chem., 260:4963-4968), its precise function and subcellular location have not been determined. We have developed a procedure for the separation of the cell fractions and organelles of Trypanosoma brucei brucei (and other trypanosome species) by differential sucrose and isopycnic PercollR centrifugation. These fractions were tested for mfVSG phospholipase activity using Trypanosoma brucei mfVSG labeled with 3H-myristic acid as substrate. The highest enzyme-specific activity was associated with the flagella and evidence is presented to suggest that it is localized in the flagellar pocket. Some activity was also associated with the Golgi complex. These results suggest that the mfVSG phospholipase is localized primarily in the membrane of the flagella pocket and possibly other membrane organelles derived from and associated with this structure, and may be part of the VSG-membrane recycling system in African trypanosomes. The activity of mfVSG phospholipase amongst various trypanosome species was determined. We show that, in contrast to the bloodstream forms of Trypanosoma brucei, cultured procyclic Trypanosoma brucei and bloodstream Trypanosoma vivax had little or no mfVSG phospholipase activity. The activity found in bloodstream forms of Trypanosoma congolense was intermediate between Trypanosoma vivax and Trypanosoma brucei.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltz T., Baltz D., Giroud C., Crockett J. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985 May;4(5):1273–1277. doi: 10.1002/j.1460-2075.1985.tb03772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bangs J. D., Hereld D., Krakow J. L., Hart G. W., Englund P. T. Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein. Proc Natl Acad Sci U S A. 1985 May;82(10):3207–3211. doi: 10.1073/pnas.82.10.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell R. M. Protein kinase C activation by diacylglycerol second messengers. Cell. 1986 Jun 6;45(5):631–632. doi: 10.1016/0092-8674(86)90774-9. [DOI] [PubMed] [Google Scholar]
  4. Black S. J., Hewett R. S., Sendashonga C. N. Trypanosoma brucei variable surface antigen is released by degenerating parasites but not by actively dividing parasites. Parasite Immunol. 1982 Jul;4(4):233–244. doi: 10.1111/j.1365-3024.1982.tb00435.x. [DOI] [PubMed] [Google Scholar]
  5. Brown W. C., Grab D. J. Biological and biochemical characterization of bovine interleukin 2. Studies with cloned bovine T cells. J Immunol. 1985 Nov;135(5):3184–3190. [PubMed] [Google Scholar]
  6. Bülow R., Overath P. Purification and characterization of the membrane-form variant surface glycoprotein hydrolase of Trypanosoma brucei. J Biol Chem. 1986 Sep 5;261(25):11918–11923. [PubMed] [Google Scholar]
  7. Bülow R., Overath P. Synthesis of a hydrolase for the membrane-form variant surface glycoprotein is repressed during transformation of Trypanosoma brucei. FEBS Lett. 1985 Jul 22;187(1):105–110. doi: 10.1016/0014-5793(85)81223-0. [DOI] [PubMed] [Google Scholar]
  8. Cardoso de Almeida M. L., Allan L. M., Turner M. J. Purification and properties of the membrane form of variant surface glycoproteins (VSGs) from Trypanosoma brucei. J Protozool. 1984 Feb;31(1):53–60. doi: 10.1111/j.1550-7408.1984.tb04289.x. [DOI] [PubMed] [Google Scholar]
  9. Cardoso de Almeida M. L., Turner M. J. The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature. 1983 Mar 24;302(5906):349–352. doi: 10.1038/302349a0. [DOI] [PubMed] [Google Scholar]
  10. Courtoy P. J., Quintart J., Baudhuin P. Shift of equilibrium density induced by 3,3'-diaminobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase-containing organelles. J Cell Biol. 1984 Mar;98(3):870–876. doi: 10.1083/jcb.98.3.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davitz M. A., Low M. G., Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. J Exp Med. 1986 May 1;163(5):1150–1161. doi: 10.1084/jem.163.5.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duvillier G., Nouvelot A., Richet C., Baltz T., Degand P. Presence of glycerol and fatty acids in the C-terminal end of a variant surface glycoprotein from Trypanosoma equiperdum. Biochem Biophys Res Commun. 1983 Jul 18;114(1):119–125. doi: 10.1016/0006-291x(83)91602-9. [DOI] [PubMed] [Google Scholar]
  13. Englund P. T., Hajduk S. L., Marini J. C. The molecular biology of trypanosomes. Annu Rev Biochem. 1982;51:695–726. doi: 10.1146/annurev.bi.51.070182.003403. [DOI] [PubMed] [Google Scholar]
  14. Ferguson M. A., Cross G. A. Myristylation of the membrane form of a Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1984 Mar 10;259(5):3011–3015. [PubMed] [Google Scholar]
  15. Ferguson M. A., Haldar K., Cross G. A. Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus. J Biol Chem. 1985 Apr 25;260(8):4963–4968. [PubMed] [Google Scholar]
  16. Ferguson M. A., Low M. G., Cross G. A. Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1985 Nov 25;260(27):14547–14555. [PubMed] [Google Scholar]
  17. Fish W. R., Looker D. L., Marr J. J., Berens R. L. Purine metabolism in the bloodstream forms of Trypanosoma gambiense and Trypanosoma rhodesiense. Biochim Biophys Acta. 1982 Nov 24;719(2):223–231. doi: 10.1016/0304-4165(82)90092-7. [DOI] [PubMed] [Google Scholar]
  18. Fox J. A., Duszenko M., Ferguson M. A., Low M. G., Cross G. A. Purification and characterization of a novel glycan-phosphatidylinositol-specific phospholipase C from Trypanosoma brucei. J Biol Chem. 1986 Nov 25;261(33):15767–15771. [PubMed] [Google Scholar]
  19. Grab D. J., Bwayo J. J. Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Trop. 1982 Dec;39(4):363–366. [PubMed] [Google Scholar]
  20. Grab D. J., Ito S., Kara U. A., Rovis L. Glycosyltransferase activities in Golgi complex and endoplasmic reticulum fractions isolated from African trypanosomes. J Cell Biol. 1984 Aug;99(2):569–577. doi: 10.1083/jcb.99.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grab D. J., Webster P., Verjee Y. The intracellular pathway and assembly of newly formed variable surface glycoprotein of Trypanosoma brucei. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7703–7707. doi: 10.1073/pnas.81.24.7703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gurnett A. M., Raper J., Turner M. J. Solution properties of the variant surface glycoprotein of Trypanosoma brucei. Mol Biochem Parasitol. 1986 Feb;18(2):141–153. doi: 10.1016/0166-6851(86)90034-4. [DOI] [PubMed] [Google Scholar]
  23. Gurnett A. M., Ward J., Raper J., Turner M. J. Purification and characterisation of membrane-form variant surface glycoproteins of Trypanosoma brucei. Mol Biochem Parasitol. 1986 Jul;20(1):1–13. doi: 10.1016/0166-6851(86)90137-4. [DOI] [PubMed] [Google Scholar]
  24. Hereld D., Krakow J. L., Bangs J. D., Hart G. W., Englund P. T. A phospholipase C from Trypanosoma brucei which selectively cleaves the glycolipid on the variant surface glycoprotein. J Biol Chem. 1986 Oct 15;261(29):13813–13819. [PubMed] [Google Scholar]
  25. Holder A. A. Carbohydrate is linked through ethanolamine to the C-terminal amino acid of Trypanosoma brucei variant surface glycoprotein. Biochem J. 1983 Jan 1;209(1):261–262. doi: 10.1042/bj2090261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jackson D. G., Owen M. J., Voorheis H. P. A new method for the rapid purification of both the membrane-bound and released forms of the variant surface glycoprotein from Trypanosoma brucei. Biochem J. 1985 Aug 15;230(1):195–202. doi: 10.1042/bj2300195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jackson D. G., Voorheis H. P. Release of the variable surface coat glycoprotein from Trypanosoma brucei requires the cleavage of a phosphate ester. J Biol Chem. 1985 Apr 25;260(8):5179–5183. [PubMed] [Google Scholar]
  28. Langreth S. G., Balber A. E. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. J Protozool. 1975 Feb;22(1):40–53. doi: 10.1111/j.1550-7408.1975.tb00943.x. [DOI] [PubMed] [Google Scholar]
  29. Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
  30. Lonsdale-Eccles J. D., Mpimbaza G. W. Thiol-dependent proteases of African trypanosomes. Analysis by electrophoresis in sodium dodecyl sulphate/polyacrylamide gels co-polymerized with fibrinogen. Eur J Biochem. 1986 Mar 17;155(3):469–473. doi: 10.1111/j.1432-1033.1986.tb09513.x. [DOI] [PubMed] [Google Scholar]
  31. Majiwa P. A., Young J. R., Hamers R., Matthyssens G. Minichromosomal variable surface glycoprotein genes and molecular karyotypes of Trypanosoma (Nannomonas) congolense. Gene. 1986;41(2-3):183–192. doi: 10.1016/0378-1119(86)90097-1. [DOI] [PubMed] [Google Scholar]
  32. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  33. Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
  34. Nicholson-Weller A., March J. P., Rosenfeld S. I., Austen K. F. Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5066–5070. doi: 10.1073/pnas.80.16.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Opperdoes F. R., Baudhuin P., Coppens I., De Roe C., Edwards S. W., Weijers P. J., Misset O. Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei. J Cell Biol. 1984 Apr;98(4):1178–1184. doi: 10.1083/jcb.98.4.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Opperdoes F. R., Borst P., Bakker S., Leene W. Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD+-linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form to Trypanosoma brucei. Eur J Biochem. 1977 Jun 1;76(1):29–39. doi: 10.1111/j.1432-1033.1977.tb11567.x. [DOI] [PubMed] [Google Scholar]
  37. Opperdoes F. R., van Roy J. The phospholipases of Trypanosoma brucei bloodstream forms and cultured procyclics. Mol Biochem Parasitol. 1982 May;5(5):309–319. doi: 10.1016/0166-6851(82)90038-x. [DOI] [PubMed] [Google Scholar]
  38. Pereira N. M., de Souza W., Machado R. D., de Castro F. T. Isolation and properties of flagella of trypanosomatids. J Protozool. 1977 Nov;24(4):511–514. doi: 10.1111/j.1550-7408.1977.tb01002.x. [DOI] [PubMed] [Google Scholar]
  39. Rovis L., Baekkeskov S. Sub-cellular fractionation of Trypanosoma brucei. Isolation and characterization of plasma membranes. Parasitology. 1980 Jun;80(3):507–524. doi: 10.1017/s0031182000000974. [DOI] [PubMed] [Google Scholar]
  40. Steiger R. F., Opperdoes F. R., Bontemps J. Subcellular fractionation of Trypanosoma brucei bloodstream forms with special reference to hydrolases. Eur J Biochem. 1980 Mar;105(1):163–175. doi: 10.1111/j.1432-1033.1980.tb04486.x. [DOI] [PubMed] [Google Scholar]
  41. Tulkens P., Beaufay H., Trouet A. Analytical fractionation of homogenates from cultured rat embryo fibroblasts. J Cell Biol. 1974 Nov;63(2 Pt 1):383–401. doi: 10.1083/jcb.63.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vickerman K., Luckins A. G. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature. 1969 Dec 13;224(5224):1125–1126. doi: 10.1038/2241125a0. [DOI] [PubMed] [Google Scholar]
  43. Vincent R., Nadeau D. A micromethod for the quantitation of cellular proteins in Percoll with the Coomassie brilliant blue dye-binding assay. Anal Biochem. 1983 Dec;135(2):355–362. doi: 10.1016/0003-2697(83)90696-6. [DOI] [PubMed] [Google Scholar]
  44. Voorheis H. P. Fatty acid uptake by bloodstream forms of Trypanosoma brucei and other species of the kinetoplastida. Mol Biochem Parasitol. 1980 Jun;1(3):177–186. doi: 10.1016/0166-6851(80)90016-x. [DOI] [PubMed] [Google Scholar]
  45. Walter R. D., Opperdoes F. R. Subcellular distribution of adenylate cyclase, cyclic-AMP phosphodiesterase, protein kinases and phosphoprotein phosphatase in Trypanosoma brucei. Mol Biochem Parasitol. 1982 Nov;6(5):287–295. doi: 10.1016/0166-6851(82)90061-5. [DOI] [PubMed] [Google Scholar]
  46. Wattiaux R., Wattiaux-De Coninck S., Ronveaux-dupal M. F., Dubois F. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol. 1978 Aug;78(2):349–368. doi: 10.1083/jcb.78.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES