Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Aug 1;105(2):875–886. doi: 10.1083/jcb.105.2.875

Interzone microtubule behavior in late anaphase and telophase spindles

PMCID: PMC2114759  PMID: 3305523

Abstract

We have studied microtubule behavior in late anaphase and telophase spindles of PtK1 cells, using fluoresceinated tubulin (DTAF-tubulin), microinjection, and laser microbeam photobleaching. We present the results of two novel tests which add to the evidence that DTAF-tubulin closely mimics the behavior of native tubulin in vivo. (a) Microinjected DTAF-tubulin was as effective as injected native tubulin in promoting division of taxol-dependent mitotic mutant cells that had been deprived of taxol. (b) Microinjected colchicine-DTAF-tubulin complex was similar to injected colchicine-native tubulin complex in causing depolymerization of spindles. Immediately after microinjection of DTAF-tubulin into wild-type cells during late anaphase or telophase, fluorescence incorporation by microtubules was seen in chromosomal half- spindles and just behind the chromosomes, but there was no fluorescence incorporation near the middle of the interzone. Over the next few minutes, tubulin fluorescence accumulated at the center of the interzone (the equator), becoming progressively more intense. In other experiments, cells were microinjected with DTAF-tubulin at prophase and allowed to equilibrate for 30 min. Cells that had progressed to late anaphase were then photobleached to reduce the fluorescence in the central portion of the interzone. Over a period of several minutes, the only substantial redistribution of fluorescence was the appearance of a bright area at the equator of the interzone. Both the site of fluorescence incorporation and the photobleaching data suggest that tubulin adds to the elongating spindle interzone near the equator where the plus ends of the interdigitated microtubules are located. In further experiments, several dark lines were photobleached perpendicular to the pole-to-pole axis of fluorescent anaphase- telophase spindles. Time-dependent changes in the spacings between the lines indicated that the two halves of the interzone lying on opposite sides of the spindle equator moved away from one another. This shows that the interdigitated microtubules, which make up most of the interzone, can undergo antiparallel sliding. Our data support a model for anaphase B in which plus end elongation of interdigitated microtubules and antiparallel sliding contribute to chromosome separation.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aist J. R., Berns M. W. Mechanics of chromosome separation during mitosis in Fusarium (Fungi imperfecti): new evidence from ultrastructural and laser microbeam experiments. J Cell Biol. 1981 Nov;91(2 Pt 1):446–458. doi: 10.1083/jcb.91.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERKELEY E. Spindle development and behavior in the giant amoeba. Biol Bull. 1948 Jun;94(3):169–175. [PubMed] [Google Scholar]
  3. Brinkley B. R., Cartwright J., Jr Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J Cell Biol. 1971 Aug;50(2):416–431. doi: 10.1083/jcb.50.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CARLSON J. G. Microdissection studies of the dividing neuroblast of the grasshopper, Chortophaga viridifasciata; de Geer. Chromosoma. 1952;5(3):199–220. doi: 10.1007/BF01271487. [DOI] [PubMed] [Google Scholar]
  5. Cabral F. R., Brady R. C., Schibler M. J. A mechanism of cellular resistance to drugs that interfere with microtubule assembly. Ann N Y Acad Sci. 1986;466:745–756. doi: 10.1111/j.1749-6632.1986.tb38456.x. [DOI] [PubMed] [Google Scholar]
  6. Cabral F. R. Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division. J Cell Biol. 1983 Jul;97(1):22–29. doi: 10.1083/jcb.97.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cabral F., Gottesman M. M. Phosphorylation of the 10-nm filament protein from Chinese hamster ovary cells. J Biol Chem. 1979 Jul 25;254(14):6203–6206. [PubMed] [Google Scholar]
  8. Cande W. Z., McDonald K. L. In vitro reactivation of anaphase spindle elongation using isolated diatom spindles. Nature. 1985 Jul 11;316(6024):168–170. doi: 10.1038/316168a0. [DOI] [PubMed] [Google Scholar]
  9. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garland D. L. Kinetics and mechanism of colchicine binding to tubulin: evidence for ligand-induced conformational change. Biochemistry. 1978 Oct 3;17(20):4266–4272. doi: 10.1021/bi00613a024. [DOI] [PubMed] [Google Scholar]
  11. Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graessmann A., Graessmann M., Mueller C. Microinjection of early SV40 DNA fragments and T antigen. Methods Enzymol. 1980;65(1):816–825. doi: 10.1016/s0076-6879(80)65076-9. [DOI] [PubMed] [Google Scholar]
  13. Hamel E., Lin C. M. Glutamate-induced polymerization of tubulin: characteristics of the reaction and application to the large-scale purification of tubulin. Arch Biochem Biophys. 1981 Jun;209(1):29–40. doi: 10.1016/0003-9861(81)90253-8. [DOI] [PubMed] [Google Scholar]
  14. Hiller G., Weber K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell. 1978 Aug;14(4):795–804. doi: 10.1016/0092-8674(78)90335-5. [DOI] [PubMed] [Google Scholar]
  15. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  16. Keith C. H., Feramisco J. R., Shelanski M. Direct visualization of fluorescein-labeled microtubules in vitro and in microinjected fibroblasts. J Cell Biol. 1981 Jan;88(1):234–240. doi: 10.1083/jcb.88.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leslie R. J., Pickett-Heaps J. D. Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. J Cell Biol. 1983 Feb;96(2):548–561. doi: 10.1083/jcb.96.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leslie R. J., Saxton W. M., Mitchison T. J., Neighbors B., Salmon E. D., McIntosh J. R. Assembly properties of fluorescein-labeled tubulin in vitro before and after fluorescence bleaching. J Cell Biol. 1984 Dec;99(6):2146–2156. doi: 10.1083/jcb.99.6.2146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Manton I., Kowallik K., von Stosch H. A. Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum). IV. The second meiotic division and conclusion. J Cell Sci. 1970 Sep;7(2):407–443. doi: 10.1242/jcs.7.2.407. [DOI] [PubMed] [Google Scholar]
  20. Margolis R. L., Wilson L. Addition of colchicine--tubulin complex to microtubule ends: the mechanism of substoichiometric colchicine poisoning. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3466–3470. doi: 10.1073/pnas.74.8.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
  22. McDonald K. L., Edwards M. K., McIntosh J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J Cell Biol. 1979 Nov;83(2 Pt 1):443–461. doi: 10.1083/jcb.83.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McIntosh J. R., Cande W. Z., Snyder J. A. Structure and physiology of the mammalian mitotic spindle. Soc Gen Physiol Ser. 1975;30:31–76. [PubMed] [Google Scholar]
  24. McIntosh J. R., Roos U. P., Neighbors B., McDonald K. L. Architecture of the microtubule component of mitotic spindles from Dictyostelium discoideum. J Cell Sci. 1985 Apr;75:93–129. doi: 10.1242/jcs.75.1.93. [DOI] [PubMed] [Google Scholar]
  25. McIntosh J. R., Saxton W. M., Stemple D. L., Leslie R. J., Welsh M. J. Dynamics of tubulin and calmodulin in the mammalian mitotic spindle. Ann N Y Acad Sci. 1986;466:566–579. doi: 10.1111/j.1749-6632.1986.tb38433.x. [DOI] [PubMed] [Google Scholar]
  26. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  27. Pickett-Heaps J. D., Tippit D. H., Cohn S. A., Spurck T. P. Microtubule dynamics in the spindle. Theoretical aspects of assembly/disassembly reactions in vivo. J Theor Biol. 1986 Jan 21;118(2):153–169. doi: 10.1016/s0022-5193(86)80131-x. [DOI] [PubMed] [Google Scholar]
  28. Salmon E. D., Leslie R. J., Saxton W. M., Karow M. L., McIntosh J. R. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol. 1984 Dec;99(6):2165–2174. doi: 10.1083/jcb.99.6.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saxton W. M., Stemple D. L., Leslie R. J., Salmon E. D., Zavortink M., McIntosh J. R. Tubulin dynamics in cultured mammalian cells. J Cell Biol. 1984 Dec;99(6):2175–2186. doi: 10.1083/jcb.99.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schulze E., Kirschner M. Microtubule dynamics in interphase cells. J Cell Biol. 1986 Mar;102(3):1020–1031. doi: 10.1083/jcb.102.3.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Soltys B. J., Borisy G. G. Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J Cell Biol. 1985 May;100(5):1682–1689. doi: 10.1083/jcb.100.5.1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sternlicht H., Ringel I. Colchicine inhibition of microtubule assembly via copolymer formation. J Biol Chem. 1979 Oct 25;254(20):10540–10550. [PubMed] [Google Scholar]
  33. TAYLOR E. W. THE MECHANISM OF COLCHICINE INHIBITION OF MITOSIS. I. KINETICS OF INHIBITION AND THE BINDING OF H3-COLCHICINE. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:160. doi: 10.1083/jcb.25.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tippit D. H., Fields C. T., O'Donnell K. L., Pickett-Heaps J. D., McLaughlin D. J. The organization of microtubules during anaphase and telophase spindle elongation in the rust fungus Puccinia. Eur J Cell Biol. 1984 May;34(1):34–44. [PubMed] [Google Scholar]
  35. Tippit D. H., Pillus L., Pickett-Heaps J. D. Near-neighbor analysis of spindle microtubules in the alga Ochromonas. Eur J Cell Biol. 1983 Mar;30(1):9–17. [PubMed] [Google Scholar]
  36. Tippit D. H., Pillus L., Pickett-Heaps J. Organization of spindle microtubules in Ochromonas danica. J Cell Biol. 1980 Dec;87(3 Pt 1):531–545. doi: 10.1083/jcb.87.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wadsworth P., Sloboda R. D. Microinjection of fluorescent tubulin into dividing sea urchin cells. J Cell Biol. 1983 Oct;97(4):1249–1254. doi: 10.1083/jcb.97.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weingarten M. D., Suter M. M., Littman D. R., Kirschner M. W. Properties of the depolymerization products of microtubules from mammalian brain. Biochemistry. 1974 Dec 31;13(27):5529–5537. doi: 10.1021/bi00724a012. [DOI] [PubMed] [Google Scholar]
  39. Zavortink M., Welsh M. J., McIntosh J. R. The distribution of calmodulin in living mitotic cells. Exp Cell Res. 1983 Dec;149(2):375–385. doi: 10.1016/0014-4827(83)90350-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES