Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Aug 1;105(2):927–936. doi: 10.1083/jcb.105.2.927

Low ionic strength solubility of myosin in sea urchin egg extracts is mediated by a myosin-binding protein

PMCID: PMC2114777  PMID: 3624311

Abstract

We identify a novel myosin-binding protein, designated 53K, which appears to mediate the low ionic strength solubility of myosin in extracts of unfertilized sea urchin eggs. The protein possesses a subunit molecular mass on SDS-PAGE of 53 kD, an S value of 7, may be organized into disulfide-linked oligomers, and is associated with myosin in egg extracts. Both myosin and 53K co-precipitate from extract upon the addition of nucleoside triphosphates and co-sediment with an S value of 24 by sedimentation velocity centrifugation. Myosin in extracts not associated with 53K has an S value of 10. Further, myosin can be immunoprecipitated from extract with antibody to 53K and the 53K in extracts binds to a myosin affinity column. When extract is depleted of 53K, a majority of the myosin precipitates out of extract in a nucleotide-independent manner. Whereas purified myosin precipitates in the absence of nucleotide when recombined with dialysis buffer or myosin-depleted extract, reconstituting 53K and myosin before addition to buffer or myosin-depleted extract partially restores the low ionic strength solubility demonstrated by myosin in fresh egg extracts. The 53-kD protein may represent a new class of authentic myosin-binding proteins that may regulate the supramolecular organization of myosin in nonmuscle cells.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlot C. H., Spudich J. A., Devreotes P. N. Chemoattractant-elicited increases in myosin phosphorylation in Dictyostelium. Cell. 1985 Nov;43(1):307–314. doi: 10.1016/0092-8674(85)90036-4. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Broschat K. O., Stidwill R. P., Burgess D. R. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Cell. 1983 Dec;35(2 Pt 1):561–571. doi: 10.1016/0092-8674(83)90190-3. [DOI] [PubMed] [Google Scholar]
  4. Bähler M., Eppenberger H. M., Wallimann T. Novel thick filament protein of chicken pectoralis muscle: the 86 kd protein. II. Distribution and localization. J Mol Biol. 1985 Nov 20;186(2):393–401. doi: 10.1016/0022-2836(85)90113-5. [DOI] [PubMed] [Google Scholar]
  5. Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
  6. Collins J. H., Korn E. D. Actin activation of Ca2+-sensitive Mg2+-ATPase activity of Acanthamoeba myosin II is enhanced by dephosphorylation of its heavy chains. J Biol Chem. 1980 Sep 10;255(17):8011–8014. [PubMed] [Google Scholar]
  7. Collins J. H., Kuznicki J., Bowers B., Korn E. D. Comparison of the actin binding and filament formation properties of phosphorylated and dephosphorylated Acanthamoeba myosin II. Biochemistry. 1982 Dec 21;21(26):6910–6915. doi: 10.1021/bi00269a045. [DOI] [PubMed] [Google Scholar]
  8. Condeelis J. S., Taylor D. L. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J Cell Biol. 1977 Sep;74(3):901–927. doi: 10.1083/jcb.74.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craig R., Smith R., Kendrick-Jones J. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. 1983 Mar 31-Apr 6Nature. 302(5907):436–439. doi: 10.1038/302436a0. [DOI] [PubMed] [Google Scholar]
  10. Eppenberger H. M., Perriard J. C., Rosenberg U. B., Strehler E. E. The Mr 165,000 M-protein myomesin: a specific protein of cross-striated muscle cells. J Cell Biol. 1981 May;89(2):185–193. doi: 10.1083/jcb.89.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrington W. F., Rodgers M. E. Myosin. Annu Rev Biochem. 1984;53:35–73. doi: 10.1146/annurev.bi.53.070184.000343. [DOI] [PubMed] [Google Scholar]
  12. Horowits R., Kempner E. S., Bisher M. E., Podolsky R. J. A physiological role for titin and nebulin in skeletal muscle. Nature. 1986 Sep 11;323(6084):160–164. doi: 10.1038/323160a0. [DOI] [PubMed] [Google Scholar]
  13. Ishimoda-Takagi T. Localization of tropomyosin in sea urchin eggs. Exp Cell Res. 1979 Mar 15;119(2):423–428. doi: 10.1016/0014-4827(79)90377-x. [DOI] [PubMed] [Google Scholar]
  14. Jeacocke S. A., England P. J. Phosphorylation of a myofibrillar protein of Mr 150 000 in perfused rat heart, and the tentative indentification of this as C-protein. FEBS Lett. 1980 Dec 15;122(1):129–132. doi: 10.1016/0014-5793(80)80418-2. [DOI] [PubMed] [Google Scholar]
  15. Kane R. E. Actin polymerization and interaction with other proteins in temperature-induced gelation of sea urchin egg extracts. J Cell Biol. 1976 Dec;71(3):704–714. doi: 10.1083/jcb.71.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kane R. E. Induction of either contractile or structural actin-based gels in sea urchin egg cytoplasmic extract. J Cell Biol. 1980 Sep;86(3):803–809. doi: 10.1083/jcb.86.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kane R. E. Interconversion of structural and contractile actin gels by insertion of myosin during assembly. J Cell Biol. 1983 Dec;97(6):1745–1752. doi: 10.1083/jcb.97.6.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuczmarski E. R., Spudich J. A. Regulation of myosin self-assembly: phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7292–7296. doi: 10.1073/pnas.77.12.7292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuźnicki J. Phosphorylation of myosin in non-muscle and smooth muscle cells. Possible rules and evolutionary trends. FEBS Lett. 1986 Aug 18;204(2):169–176. doi: 10.1016/0014-5793(86)80806-7. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Mabuchi I., Hamaguchi Y., Kobayashi T., Hosoya H., Tsukita S., Tsukita S. Alpha-actinin from sea urchin eggs: biochemical properties, interaction with actin, and distribution in the cell during fertilization and cleavage. J Cell Biol. 1985 Feb;100(2):375–383. doi: 10.1083/jcb.100.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maruta H., Baltes W., Dieter P., Marmé D., Gerisch G. Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells of Dictyostelium discoideum. EMBO J. 1983;2(4):535–542. doi: 10.1002/j.1460-2075.1983.tb01459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maruyama K., Sawada H., Kimura S., Ohashi K., Higuchi H., Umazume Y. Connectin filaments in stretched skinned fibers of frog skeletal muscle. J Cell Biol. 1984 Oct;99(4 Pt 1):1391–1397. doi: 10.1083/jcb.99.4.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
  26. Moos C., Feng I. N. Effect of C-protein on actomyosin ATPase. Biochim Biophys Acta. 1980 Oct 1;632(2):141–149. doi: 10.1016/0304-4165(80)90071-9. [DOI] [PubMed] [Google Scholar]
  27. Moos C. Fluorescence microscope study of the binding of added C protein to skeletal muscle myofibrils. J Cell Biol. 1981 Jul;90(1):25–31. doi: 10.1083/jcb.90.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  29. Ogihara S., Ikebe M., Takahashi K., Tonomura Y. Requirement of phosphorylation of Physarum myosin heavy chain for thick filament formation, actin activation of Mg2+-ATPase activity, and Ca2+-inhibitory superprecipitation. J Biochem. 1983 Jan;93(1):205–223. doi: 10.1093/oxfordjournals.jbchem.a134155. [DOI] [PubMed] [Google Scholar]
  30. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  31. Pollard T. D. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. J Cell Biol. 1976 Mar;68(3):579–601. doi: 10.1083/jcb.68.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reinach F. C., Masaki T., Shafiq S., Obinata T., Fischman D. A. Isoforms of C-protein in adult chicken skeletal muscle: detection with monoclonal antibodies. J Cell Biol. 1982 Oct;95(1):78–84. doi: 10.1083/jcb.95.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reisler E., Cheung P., Borochov N. Macromolecular assemblies of myosin. Biophys J. 1986 Jan;49(1):335–342. doi: 10.1016/S0006-3495(86)83646-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
  35. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Trotter J. A., Nixon C. S., Johnson M. A. The heavy chain of macrophage myosin is phosphorylated at the tip of the tail. J Biol Chem. 1985 Nov 15;260(26):14374–14378. [PubMed] [Google Scholar]
  37. Trybus K. M., Lowey S. Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength. J Biol Chem. 1984 Jul 10;259(13):8564–8571. [PubMed] [Google Scholar]
  38. Trybus K. M., Lowey S. Mechanism of smooth muscle myosin phosphorylation. J Biol Chem. 1985 Dec 15;260(29):15988–15995. [PubMed] [Google Scholar]
  39. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 1985;6:315–369. doi: 10.1007/978-1-4757-4723-2_10. [DOI] [PubMed] [Google Scholar]
  40. Yumura S., Fukui Y. Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium. Nature. 1985 Mar 14;314(6007):194–196. doi: 10.1038/314194a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES