Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Aug 1;105(2):833–842. doi: 10.1083/jcb.105.2.833

Reversible binding of actin to gelsolin and profilin in human platelet extracts

PMCID: PMC2114783  PMID: 3040771

Abstract

This paper documents the reversible appearance of high-affinity complexes of profilin and gelsolin with actin in extracts of platelets undergoing activation and actin assembly. Sepharose beads coupled to either monoclonal anti-gelsolin antibodies or to polyproline were used to extract gelsolin and profilin, respectively, from EGTA-containing platelet extracts and determine the proportion of these molecules bound to actin with sufficient affinity to withstand dilution (high-affinity complexes). Resting platelets (incubated for 30 min at 37 degrees C after gel filtration) contained nearly no high-affinity actin/gelsolin or actin/profilin complexes. Thrombin, within seconds, caused quantitative conversion of platelet profilin and gelsolin to high- affinity complexes with actin, but these complexes were not present 5 min after stimulation. The calcium-dependent actin filament-severing activity of platelet extracts, a function of free gelsolin, fell in concert with the formation of EGTA-stable actin/gelsolin complexes, and rose when the adsorption experiments indicated that free gelsolin was restored. The dissociation of high-affinity complexes was temporally correlated with the accumulation of actin in the Triton-insoluble cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryan J., Coluccio L. M. Kinetic analysis of F-actin depolymerization in the presence of platelet gelsolin and gelsolin-actin complexes. J Cell Biol. 1985 Oct;101(4):1236–1244. doi: 10.1083/jcb.101.4.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryan J., Kurth M. C. Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem. 1984 Jun 25;259(12):7480–7487. [PubMed] [Google Scholar]
  3. Burn P., Rotman A., Meyer R. K., Burger M. M. Diacylglycerol in large alpha-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature. 1985 Apr 4;314(6010):469–472. doi: 10.1038/314469a0. [DOI] [PubMed] [Google Scholar]
  4. Casella J. F., Flanagan M. D., Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature. 1981 Sep 24;293(5830):302–305. doi: 10.1038/293302a0. [DOI] [PubMed] [Google Scholar]
  5. Chaponnier C., Janmey P. A., Yin H. L. The actin filament-severing domain of plasma gelsolin. J Cell Biol. 1986 Oct;103(4):1473–1481. doi: 10.1083/jcb.103.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chaponnier C., Yin H. L., Stossel T. P. Reversibility of gelsolin/actin interaction in macrophages. Evidence of Ca2+-dependent and Ca2+-independent pathways. J Exp Med. 1987 Jan 1;165(1):97–106. doi: 10.1084/jem.165.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper J. A., Blum J. D., Williams R. C., Jr, Pollard T. D. Purification and characterization of actophorin, a new 15,000-dalton actin-binding protein from Acanthamoeba castellanii. J Biol Chem. 1986 Jan 5;261(1):477–485. [PubMed] [Google Scholar]
  8. Coué M., Korn E. D. Interaction of plasma gelsolin with G-actin and F-actin in the presence and absence of calcium ions. J Biol Chem. 1985 Dec 5;260(28):15033–15041. [PubMed] [Google Scholar]
  9. DiNubile M. J., Southwick F. S. Effects of macrophage profilin on actin in the presence and absence of acumentin and gelsolin. J Biol Chem. 1985 Jun 25;260(12):7402–7409. [PubMed] [Google Scholar]
  10. Fox J. E., Boyles J. K., Reynolds C. C., Phillips D. R. Actin filament content and organization in unstimulated platelets. J Cell Biol. 1984 Jun;98(6):1985–1991. doi: 10.1083/jcb.98.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fox J. E., Phillips D. R. Polymerization and organization of actin filaments within platelets. Semin Hematol. 1983 Oct;20(4):243–260. [PubMed] [Google Scholar]
  12. Gonnella P. A., Nachmias V. T. Platelet activation and microfilament bundling. J Cell Biol. 1981 Apr;89(1):146–151. doi: 10.1083/jcb.89.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris H. E., Weeds A. G. Platelet actin: sub-cellular distribution and association with profilin. FEBS Lett. 1978 Jun 1;90(1):84–88. doi: 10.1016/0014-5793(78)80303-2. [DOI] [PubMed] [Google Scholar]
  14. Hartwig J. H., Stossel T. P. Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments. J Mol Biol. 1981 Jan 25;145(3):563–581. doi: 10.1016/0022-2836(81)90545-3. [DOI] [PubMed] [Google Scholar]
  15. Janmey P. A., Chaponnier C., Lind S. E., Zaner K. S., Stossel T. P., Yin H. L. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochemistry. 1985 Jul 2;24(14):3714–3723. doi: 10.1021/bi00335a046. [DOI] [PubMed] [Google Scholar]
  16. Janmey P. A., Stossel T. P. Kinetics of actin monomer exchange at the slow growing ends of actin filaments and their relation to the elongation of filaments shortened by gelsolin. J Muscle Res Cell Motil. 1986 Oct;7(5):446–454. doi: 10.1007/BF01753587. [DOI] [PubMed] [Google Scholar]
  17. Janmey P. A., Stossel T. P. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature. 1987 Jan 22;325(6102):362–364. doi: 10.1038/325362a0. [DOI] [PubMed] [Google Scholar]
  18. Jennings L. K., Fox J. E., Edwards H. H., Phillips D. R. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem. 1981 Jul 10;256(13):6927–6932. [PubMed] [Google Scholar]
  19. Kito M., Narita H., Takamura H., Park H. J., Matsuura T., Tanaka K. Dissociation of Ca2+ mobilization from breakdown of phosphatidylinositol 4,5-bisphosphate in activated human platelets. J Biochem. 1986 Apr;99(4):1277–1280. doi: 10.1093/oxfordjournals.jbchem.a135592. [DOI] [PubMed] [Google Scholar]
  20. Kurth M. C., Bryan J. Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin. J Biol Chem. 1984 Jun 25;259(12):7473–7479. [PubMed] [Google Scholar]
  21. Kurth M. C., Wang L. L., Dingus J., Bryan J. Purification and characterization of a gelsolin-actin complex from human platelets. Evidence for Ca2+-insensitive functions. J Biol Chem. 1983 Sep 25;258(18):10895–10903. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lassing I., Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature. 1985 Apr 4;314(6010):472–474. doi: 10.1038/314472a0. [DOI] [PubMed] [Google Scholar]
  25. Lind S. E., Yin H. L., Stossel T. P. Human platelets contain gelsolin. A regulator of actin filament length. J Clin Invest. 1982 Jun;69(6):1384–1387. doi: 10.1172/JCI110578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mabuchi I. An actin-depolymerizing protein (depactin) from starfish oocytes: properties and interaction with actin. J Cell Biol. 1983 Nov;97(5 Pt 1):1612–1621. doi: 10.1083/jcb.97.5.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Markey F., Larsson H., Weber K., Lindberg U. Nucleation of actin polymerization from profilactin. Opposite effects of different nuclei. Biochim Biophys Acta. 1982 May 21;704(1):43–51. doi: 10.1016/0167-4838(82)90130-3. [DOI] [PubMed] [Google Scholar]
  28. Markey F., Lindberg U., Eriksson L. Human platelets contain profilin, a potential regulator of actin polymerisability. FEBS Lett. 1978 Apr 1;88(1):75–79. doi: 10.1016/0014-5793(78)80610-3. [DOI] [PubMed] [Google Scholar]
  29. Markey F., Persson T., Lindberg U. A 90 000-dalton actin-binding protein from platelets. Comparison with villin and plasma brevin. Biochim Biophys Acta. 1982 Dec 6;709(1):122–133. doi: 10.1016/0167-4838(82)90429-0. [DOI] [PubMed] [Google Scholar]
  30. Markey F., Persson T., Lindberg U. Characterization of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor. Cell. 1981 Jan;23(1):145–153. doi: 10.1016/0092-8674(81)90279-8. [DOI] [PubMed] [Google Scholar]
  31. Northrop J., Weber A., Mooseker M. S., Franzini-Armstrong C., Bishop M. F., Dubyak G. R., Tucker M., Walsh T. P. Different calcium dependence of the capping and cutting activities of villin. J Biol Chem. 1986 Jul 15;261(20):9274–9281. [PubMed] [Google Scholar]
  32. Nyström L. E., Lindberg U., Kendrick-Jones J., Jakes R. The amino acid sequence of profilin from calf spleen. FEBS Lett. 1979 May 1;101(1):161–165. doi: 10.1016/0014-5793(79)81317-4. [DOI] [PubMed] [Google Scholar]
  33. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  34. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  35. Pollard T. D., Cooper J. A. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry. 1984 Dec 18;23(26):6631–6641. doi: 10.1021/bi00321a054. [DOI] [PubMed] [Google Scholar]
  36. Rink T. J., Smith S. W., Tsien R. Y. Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett. 1982 Nov 1;148(1):21–26. doi: 10.1016/0014-5793(82)81234-9. [DOI] [PubMed] [Google Scholar]
  37. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  39. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  40. Tanaka M., Shibata H. Poly(L-proline)-binding proteins from chick embryos are a profilin and a profilactin. Eur J Biochem. 1985 Sep 2;151(2):291–297. doi: 10.1111/j.1432-1033.1985.tb09099.x. [DOI] [PubMed] [Google Scholar]
  41. Tobacman L. S., Brenner S. L., Korn E. D. Effect of Acanthamoeba profilin on the pre-steady state kinetics of actin polymerization and on the concentration of F-actin at steady state. J Biol Chem. 1983 Jul 25;258(14):8806–8812. [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tseng P. C., Pollard T. D. Mechanism of action of Acanthamoeba profilin: demonstration of actin species specificity and regulation by micromolar concentrations of MgCl2. J Cell Biol. 1982 Jul;94(1):213–218. doi: 10.1083/jcb.94.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Walsh T. P., Weber A., Davis K., Bonder E., Mooseker M. Calcium dependence of villin-induced actin depolymerization. Biochemistry. 1984 Dec 4;23(25):6099–6102. doi: 10.1021/bi00320a030. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES