Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Sep 1;105(3):1073–1085. doi: 10.1083/jcb.105.3.1073

Acquisition of antigens characteristic of adult pericentral hepatocytes by differentiating fetal hepatoblasts in vitro

PMCID: PMC2114786  PMID: 2888770

Abstract

Antigens specific to pericentral hepatocytes have been studied in adult mouse liver, during fetal development, and in cultured fetal hepatoblasts. Antibody reactive with glutamine synthetase stained all fetal liver cells but almost all cells lost this antigen after birth; only a single layer of pericentral cells retained it in adulthood. In contrast, monoclonal antibodies to major urinary protein (MUP) did not detect the antigen until approximately 3 wk after birth, after which time the cells within 6-10 cell diameters of the central veins were positive. Cultured fetal liver cells from embryos at 13 +/- 1 d of gestation were capable of differentiating in vitro to mimic events that would occur had the cells remained in the animal. About 10-20% of the explanted cells grew into clusters of hepatocyte-like cells, all of which stained with albumin antibodies. MUP monoclonals were reactive with one-half of the differentiated fetal hepatocytes. Glutamine synthetase was present in all hepatocytes after several days in culture and gradually decreased and remained in only occasional cells, all of which also contained the MUP antigen. These findings suggest that a sequence of gene controls characterizes expression of specific genes in developing liver, and that differentiating fetal hepatoblasts are capable of undergoing similar patterns of gene activity in culture.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J., Blobel G. Immunoprecipitation of proteins from cell-free translations. Methods Enzymol. 1983;96:111–120. doi: 10.1016/s0076-6879(83)96012-3. [DOI] [PubMed] [Google Scholar]
  2. Antakly T., Lynch K. R., Nakhasi H. L., Feigelson P. Cellular dynamics of the hormonal and developmental induction of hepatic alpha 2u globulin as demonstrated by immunocytochemistry and specific mRNA monitoring. Am J Anat. 1982 Oct;165(2):211–224. doi: 10.1002/aja.1001650209. [DOI] [PubMed] [Google Scholar]
  3. Babiss L. E., Friedman J. M., Darnell J. E., Jr Cellular promoters incorporated into the adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and beta-globin promoters. Mol Cell Biol. 1986 Nov;6(11):3798–3806. doi: 10.1128/mcb.6.11.3798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker R. E., Jefferson L. S., Shiman R. Immunocytochemical identification of phenylalanine hydroxylase and albumin in cultured hepatoma cells and isolated rat hepatocytes. J Cell Biol. 1981 Jul;90(1):145–152. doi: 10.1083/jcb.90.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnstable C. J., Akagawa K., Hofstein R., Horn J. P. Monoclonal antibodies that label discrete cell types in the mammalian nervous system. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):863–876. doi: 10.1101/sqb.1983.048.01.089. [DOI] [PubMed] [Google Scholar]
  6. Bissell D. M., Guzelian P. S. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann N Y Acad Sci. 1980;349:85–98. doi: 10.1111/j.1749-6632.1980.tb29518.x. [DOI] [PubMed] [Google Scholar]
  7. Carlsson R. N., Ingvarsson B. I. Localization of alpha-fetoprotein and albumin in pig liver during fetal and neonatal development. Dev Biol. 1979 Nov;73(1):1–10. doi: 10.1016/0012-1606(79)90133-7. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Clark A. J., Chave-Cox A., Ma X., Bishop J. O. Analysis of mouse major urinary protein genes: variation between the exonic sequences of group 1 genes and a comparison with an active gene out with group 1 both suggest that gene conversion has occurred between MUP genes. EMBO J. 1985 Dec 1;4(12):3167–3171. doi: 10.1002/j.1460-2075.1985.tb04060.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clayton D. F., Darnell J. E., Jr Changes in liver-specific compared to common gene transcription during primary culture of mouse hepatocytes. Mol Cell Biol. 1983 Sep;3(9):1552–1561. doi: 10.1128/mcb.3.9.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clayton D. F., Harrelson A. L., Darnell J. E., Jr Dependence of liver-specific transcription on tissue organization. Mol Cell Biol. 1985 Oct;5(10):2623–2632. doi: 10.1128/mcb.5.10.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clissold P. M., Hainey S., Bishop J. O. Messenger RNAs coding for mouse major urinary proteins are differentially induced by testosterone. Biochem Genet. 1984 Apr;22(3-4):379–387. doi: 10.1007/BF00484236. [DOI] [PubMed] [Google Scholar]
  13. Crick F. H., Lawrence P. A. Compartments and polyclones in insect development. Science. 1975 Aug 1;189(4200):340–347. doi: 10.1126/science.806966. [DOI] [PubMed] [Google Scholar]
  14. Derman E., Krauter K., Walling L., Weinberger C., Ray M., Darnell J. E., Jr Transcriptional control in the production of liver-specific mRNAs. Cell. 1981 Mar;23(3):731–739. doi: 10.1016/0092-8674(81)90436-0. [DOI] [PubMed] [Google Scholar]
  15. Friedman J. M., Babiss L. E., Clayton D. F., Darnell J. E., Jr Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunoglobulin expression. Mol Cell Biol. 1986 Nov;6(11):3791–3797. doi: 10.1128/mcb.6.11.3791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Friedman J. M., Chung E. Y., Darnell J. E., Jr Gene expression during liver regeneration. J Mol Biol. 1984 Oct 15;179(1):37–53. doi: 10.1016/0022-2836(84)90305-x. [DOI] [PubMed] [Google Scholar]
  17. Garcia-Bellido A., Ripoll P. Cell lineage and differentiation in Drosophila. Results Probl Cell Differ. 1978;9:119–156. doi: 10.1007/978-3-540-35803-9_6. [DOI] [PubMed] [Google Scholar]
  18. Gebhardt R., Mecke D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 1983;2(4):567–570. doi: 10.1002/j.1460-2075.1983.tb01464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Greengard O. Enzymic differentiation in mammalian liver injection of fetal rats with hormones causes the premature formation of liver enzymes. Science. 1969 Feb 28;163(3870):891–895. doi: 10.1126/science.163.3870.891. [DOI] [PubMed] [Google Scholar]
  20. Greengard O., Federman M., Knox W. E. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J Cell Biol. 1972 Feb;52(2):261–272. doi: 10.1083/jcb.52.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  22. Gumucio J. J., Miller D. L. Functional implications of liver cell heterogeneity. Gastroenterology. 1981 Feb;80(2):393–403. [PubMed] [Google Scholar]
  23. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  24. Houssaint E. Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 1980 Oct;9(5):269–279. doi: 10.1016/0045-6039(80)90026-3. [DOI] [PubMed] [Google Scholar]
  25. Howard F. D., Ledbetter J. A., Mehdi S. Q., Herzenberg L. A. A rapid method for the detection of antibodies to cell surface antigens: a solid phase radioimmunoassay using cell membranes. J Immunol Methods. 1980;38(1-2):75–84. doi: 10.1016/0022-1759(80)90332-4. [DOI] [PubMed] [Google Scholar]
  26. Jefferson D. M., Clayton D. F., Darnell J. E., Jr, Reid L. M. Posttranscriptional modulation of gene expression in cultured rat hepatocytes. Mol Cell Biol. 1984 Sep;4(9):1929–1934. doi: 10.1128/mcb.4.9.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jungermann K., Katz N. Functional hepatocellular heterogeneity. Hepatology. 1982 May-Jun;2(3):385–395. doi: 10.1002/hep.1840020316. [DOI] [PubMed] [Google Scholar]
  28. Katz N., Teutsch H. F., Jungermann K., Sasse D. Perinatal development of the metabolic zonation of hamster liver parenchyma. FEBS Lett. 1976 Oct 15;69(1):23–26. doi: 10.1016/0014-5793(76)80645-x. [DOI] [PubMed] [Google Scholar]
  29. Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
  30. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  31. Le Rumeur E., Beaumont C., Guillouzo C., Rissel M., Bourel M., Guillouzo A. All normal rat hepatocytes produce albumin at a rate related to their degree of ploidy. Biochem Biophys Res Commun. 1981 Aug 14;101(3):1038–1046. doi: 10.1016/0006-291x(81)91853-2. [DOI] [PubMed] [Google Scholar]
  32. LeBouton A. V., Marchand R. Changes in the distribution of thymidine-3H labeled cells in the growing liver acinus of neonatal rats. Dev Biol. 1970 Dec;23(4):524–533. doi: 10.1016/0012-1606(70)90138-7. [DOI] [PubMed] [Google Scholar]
  33. Leffert H. L., Paul D. Serum dependent growth of primary cultured differentiated fetal rat hepatocytes in arginine-deficient medium. J Cell Physiol. 1973 Feb;81(1):113–124. doi: 10.1002/jcp.1040810114. [DOI] [PubMed] [Google Scholar]
  34. Leffert H. L., Paul D. Studies on primary cultures of differentiated fetal liver cells. J Cell Biol. 1972 Mar;52(3):559–568. doi: 10.1083/jcb.52.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Leffert H., Moran T., Sell S., Skelly H., Ibsen K., Mueller M., Arias I. Growth state-dependent phenotypes of adult hepatocytes in primary monolayer culture. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1834–1838. doi: 10.1073/pnas.75.4.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lerner E. A. How to make a hybridoma. Yale J Biol Med. 1981 Sep-Oct;54(5):387–402. [PMC free article] [PubMed] [Google Scholar]
  37. Michalopoulos G., Pitot H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res. 1975 Aug;94(1):70–78. doi: 10.1016/0014-4827(75)90532-7. [DOI] [PubMed] [Google Scholar]
  38. Miller R. E., Hackenberg R., Gershman H. Regulation of glutamine synthetase in cultured 3T3-L1 cells by insulin, hydrocortisone, and dibutyryl cyclic AMP. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1418–1422. doi: 10.1073/pnas.75.3.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Morata G., Lawrence P. A. Homoeotic genes, compartments and cell determination in Drosophila. Nature. 1977 Jan 20;265(5591):211–216. doi: 10.1038/265211a0. [DOI] [PubMed] [Google Scholar]
  40. PITOT H. C., PERAINO C., MORSE P. A., Jr, POTTER V. R. HEPATOMAS IN TISSUE CULTURE COMPARED WITH ADAPTING LIVER IN VIVO. Natl Cancer Inst Monogr. 1964 Apr;13:229–245. [PubMed] [Google Scholar]
  41. Patek P. Q., Collins J. L., Cohn M. Transformed cell lines susceptible or resistant to in vivo surveillance against tumorigenesis. Nature. 1978 Nov 30;276(5687):510–511. doi: 10.1038/276510a0. [DOI] [PubMed] [Google Scholar]
  42. Peterson J. A., Weiss M. C. Expression of differentiated functions in hepatoma cell hybrids: induction of mouse albumin production in rat hepatoma-mouse fibroblast hybrids. Proc Natl Acad Sci U S A. 1972 Mar;69(3):571–575. doi: 10.1073/pnas.69.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. REUBER M. D. A transplantable bile-secreting hepatocellular carcinoma in the rat. J Natl Cancer Inst. 1961 Apr;26:891–899. [PubMed] [Google Scholar]
  44. Rappaport A. M. The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol. 1976 May;157(3):215–243. doi: 10.1016/s0005-8165(76)80083-2. [DOI] [PubMed] [Google Scholar]
  45. Ratanasavanh D., Beaune P., Baffet G., Rissel M., Kremers P., Guengerich F. P., Guillouzo A. Immunocytochemical evidence for the maintenance of cytochrome P-450 isozymes, NADPH cytochrome C reductase, and epoxide hydrolase in pure and mixed primary cultures of adult human hepatocytes. J Histochem Cytochem. 1986 Apr;34(4):527–533. doi: 10.1177/34.4.3081626. [DOI] [PubMed] [Google Scholar]
  46. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schreiber G., Lesch R., Weinssen U., Zähringer J. The distribution of albumin synthesis throughout the liver lobule. J Cell Biol. 1970 Oct;47(1):285–289. doi: 10.1083/jcb.47.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tate S. S., Leu F. Y., Meister A. Rat liver glutamine synthetase. Preparation, properties, and mechanism of inhibition by carbamyl phosphate. J Biol Chem. 1972 Sep 10;247(17):5312–5321. [PubMed] [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Weiss M. C., Chaplain M. Expression of differentiated functions in hepatoma cell hybrids: reappearance of tyrosine aminotransferase inducibility after the loss of chromosomes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3026–3030. doi: 10.1073/pnas.68.12.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Widman L. E., Chasin L. A. Multihormonal induction of alpha 2u-globulin in an established rat hepatoma cell line. J Cell Physiol. 1982 Sep;112(3):316–326. doi: 10.1002/jcp.1041120303. [DOI] [PubMed] [Google Scholar]
  52. Wolf C. R., Moll E., Friedberg T., Oesch F., Buchmann A., Kuhlmann W. D., Kunz H. W. Characterization, localization and regulation of a novel phenobarbital-inducible form of cytochrome P450, compared with three further P450-isoenzymes, NADPH P450-reductase, glutathione transferases and microsomal epoxide hydrolase. Carcinogenesis. 1984 Aug;5(8):993–1001. doi: 10.1093/carcin/5.8.993. [DOI] [PubMed] [Google Scholar]
  53. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES