Abstract
We have used pulse-chase metabolic radiolabeling with L-[35S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates. Approximate half-times for arrival are in the range of 90-120 min for aminopeptidase N and dipeptidylpeptidase IV whereas only 15-20% of the mature radiolabeled HA 4 associated with the hepatocyte plasma membrane fraction has become apical even after 150 min of chase. Our results suggest a mechanism for hepatocyte plasma membrane biogenesis in vivo in which all integral plasma membrane proteins are shipped first to the basolateral domain, followed by the specific retrieval and transport of apical proteins to the apical domain at distinct rates.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartles J. R., Braiterman L. T., Hubbard A. L. Biochemical characterization of domain-specific glycoproteins of the rat hepatocyte plasma membrane. J Biol Chem. 1985 Oct 15;260(23):12792–12802. [PubMed] [Google Scholar]
- Bartles J. R., Braiterman L. T., Hubbard A. L. Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane. J Cell Biol. 1985 Apr;100(4):1126–1138. doi: 10.1083/jcb.100.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartles J. R., Hubbard A. L. Preservation of hepatocyte plasma membrane domains during cell division in situ in regenerating rat liver. Dev Biol. 1986 Nov;118(1):286–295. doi: 10.1016/0012-1606(86)90095-3. [DOI] [PubMed] [Google Scholar]
- Brown A. E., Lok M. P., Elovson J. Improved method for the isolation of rat liver plasma membrane. Biochim Biophys Acta. 1976 Mar 19;426(3):418–432. doi: 10.1016/0005-2736(76)90387-4. [DOI] [PubMed] [Google Scholar]
- Danielsen E. M., Cowell G. M. Biosynthesis of intestinal microvillar proteins. Evidence for an intracellular sorting taking place in, or shortly after, exit from the Golgi complex. Eur J Biochem. 1985 Oct 15;152(2):493–499. doi: 10.1111/j.1432-1033.1985.tb09223.x. [DOI] [PubMed] [Google Scholar]
- Drickamer K., Mamon J. F., Binns G., Leung J. O. Primary structure of the rat liver asialoglycoprotein receptor. Structural evidence for multiple polypeptide species. J Biol Chem. 1984 Jan 25;259(2):770–778. [PubMed] [Google Scholar]
- Dunn W. A., Connolly T. P., Hubbard A. L. Receptor-mediated endocytosis of epidermal growth factor by rat hepatocytes: receptor pathway. J Cell Biol. 1986 Jan;102(1):24–36. doi: 10.1083/jcb.102.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn W. A., Hubbard A. L. Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics. J Cell Biol. 1984 Jun;98(6):2148–2159. doi: 10.1083/jcb.98.6.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elovson J. Biogenesis of plasma membrane glycoproteins. Tracer kinetic study of two rat liver plasma membrane glycoproteins in vivo. J Biol Chem. 1980 Jun 25;255(12):5816–5825. [PubMed] [Google Scholar]
- Evans W. H., Flint N. A., Vischer P. Biogenesis of hepatocyte plasma-membrane domains. Incorporation of (3H)fucose into plasma-membrane and golgi-apparatus glycoproteins. Biochem J. 1980 Dec 15;192(3):903–910. doi: 10.1042/bj1920903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller S. D., Bravo R., Simons K. An enzymatic assay reveals that proteins destined for the apical or basolateral domains of an epithelial cell line share the same late Golgi compartments. EMBO J. 1985 Feb;4(2):297–307. doi: 10.1002/j.1460-2075.1985.tb03629.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottlieb T. A., Beaudry G., Rizzolo L., Colman A., Rindler M., Adesnik M., Sabatini D. D. Secretion of endogenous and exogenous proteins from polarized MDCK cell monolayers. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2100–2104. doi: 10.1073/pnas.83.7.2100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G., Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986 Oct 24;234(4775):438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
- Hauri H. P., Sterchi E. E., Bienz D., Fransen J. A., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoppe C. A., Connolly T. P., Hubbard A. L. Transcellular transport of polymeric IgA in the rat hepatocyte: biochemical and morphological characterization of the transport pathway. J Cell Biol. 1985 Dec;101(6):2113–2123. doi: 10.1083/jcb.101.6.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard A. L., Bartles J. R., Braiterman L. T. Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J Cell Biol. 1985 Apr;100(4):1115–1125. doi: 10.1083/jcb.100.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard A. L., Ma A. Isolation of rat hepatocyte plasma membranes. II. Identification of membrane-associated cytoskeletal proteins. J Cell Biol. 1983 Jan;96(1):230–239. doi: 10.1083/jcb.96.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard A. L., Wall D. A., Ma A. Isolation of rat hepatocyte plasma membranes. I. Presence of the three major domains. J Cell Biol. 1983 Jan;96(1):217–229. doi: 10.1083/jcb.96.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
- Kloppel T. M., Brown W. R., Reichen J. Mechanisms of secretion of proteins into bile: studies in the perfused rat liver. Hepatology. 1986 Jul-Aug;6(4):587–594. doi: 10.1002/hep.1840060407. [DOI] [PubMed] [Google Scholar]
- Kondor-Koch C., Bravo R., Fuller S. D., Cutler D., Garoff H. Exocytotic pathways exist to both the apical and the basolateral cell surface of the polarized epithelial cell MDCK. Cell. 1985 Nov;43(1):297–306. doi: 10.1016/0092-8674(85)90035-2. [DOI] [PubMed] [Google Scholar]
- LaRusso N. F. Proteins in bile: how they get there and what they do. Am J Physiol. 1984 Sep;247(3 Pt 1):G199–G205. doi: 10.1152/ajpgi.1984.247.3.G199. [DOI] [PubMed] [Google Scholar]
- Lorenzsonn V., Korsmo H., Olsen W. A. Localization of sucrase-isomaltase in the rat enterocyte. Gastroenterology. 1987 Jan;92(1):98–105. doi: 10.1016/0016-5085(87)90844-4. [DOI] [PubMed] [Google Scholar]
- Louvard D. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4132–4136. doi: 10.1073/pnas.77.7.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matlin K. S. The sorting of proteins to the plasma membrane in epithelial cells. J Cell Biol. 1986 Dec;103(6 Pt 2):2565–2568. doi: 10.1083/jcb.103.6.2565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
- Moktari S., Feracci H., Gorvel J. P., Mishal Z., Rigal A., Maroux S. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes. J Membr Biol. 1986;89(1):53–63. doi: 10.1007/BF01870895. [DOI] [PubMed] [Google Scholar]
- Mostov K. E., Simister N. E. Transcytosis. Cell. 1985 Dec;43(2 Pt 1):389–390. doi: 10.1016/0092-8674(85)90166-7. [DOI] [PubMed] [Google Scholar]
- Mueller S. C., Hubbard A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes. J Cell Biol. 1986 Mar;102(3):932–942. doi: 10.1083/jcb.102.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane: localization of leucine aminopeptidase to the bile canalicular domain. J Cell Biol. 1983 Jun;96(6):1548–1558. doi: 10.1083/jcb.96.6.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J., Berger E. G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol. 1982 Apr;93(1):223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J., Taatjes D. J., Lucocq J. M., Weinstein J., Paulson J. C. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell. 1985 Nov;43(1):287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
- Simons K., Fuller S. D. Cell surface polarity in epithelia. Annu Rev Cell Biol. 1985;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
- Solari R., Kraehenbuhl J. P. Biosynthesis of the IgA antibody receptor: a model for the transepithelial sorting of a membrane glycoprotein. Cell. 1984 Jan;36(1):61–71. doi: 10.1016/0092-8674(84)90074-6. [DOI] [PubMed] [Google Scholar]
- Strous G. J. Golgi and secreted galactosyltransferase. CRC Crit Rev Biochem. 1986;21(2):119–151. doi: 10.3109/10409238609113610. [DOI] [PubMed] [Google Scholar]
- Strous G. J., Willemsen R., van Kerkhof P., Slot J. W., Geuze H. J., Lodish H. F. Vesicular stomatitis virus glycoprotein, albumin, and transferrin are transported to the cell surface via the same Golgi vesicles. J Cell Biol. 1983 Dec;97(6):1815–1822. doi: 10.1083/jcb.97.6.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sztul E. S., Howell K. E., Palade G. E. Intracellular and transcellular transport of secretory component and albumin in rat hepatocytes. J Cell Biol. 1983 Nov;97(5 Pt 1):1582–1591. doi: 10.1083/jcb.97.5.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wall D. A., Hubbard A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments. J Cell Biol. 1985 Dec;101(6):2104–2112. doi: 10.1083/jcb.101.6.2104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein J., de Souza-e-Silva U., Paulson J. C. Purification of a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase and a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase to homogeneity from rat liver. J Biol Chem. 1982 Nov 25;257(22):13835–13844. [PubMed] [Google Scholar]